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Zusammenfassung

In dieser Arbeit studieren wir Funktionenräume mit variabler Glattheit. Diese
sollen Funktionen klassifizieren, die unterschiedliches Glattheitsverhalten in ver-
schiedenen Gebieten oder einzelnen Punkten besitzen, zum Beispiel Funktionen
mit lokalen Singularitäten. Auch spezielle Differentialoperatoren mit Entartun-
gen, beispielsweise auf dem Rand eines Gebietes, benötigen für die mögliche Ent-
wicklung einer Lösungstheorie Funktionenräume, die diese Entartungen reflek-
tieren. Ein Vorläufer solcher Räume vom Sobolev-Typ kann durch die Norm

‖u|Wm′

p (Rn)‖ + ‖̺(x)u|Wm
p (Rn)‖

mit m > m′ und einer glatten Funktion ̺(x), die auf einem Gebiet Ω ver-
schwindet, charakterisiert werden. Hier wird von der Funktion u global die
Glattheit m′ gefordert, jedoch außerhalb von Ω sogar die Glattheit m. In einem
allgemeineren Kontext können solche Räume mittels spezieller Pseudodifferen-
tialoperatoren beschrieben werden. Ein solcher Pseudodifferentialoperator hat
die Form

A(x,Dx)u(x) = (2π)−n

∫
eixξa(x, ξ)û(ξ)dξ,

wobei û die Fouriertransformierte von u und a(x, ξ) das sogenannte Symbol von

A bezeichnet. Als Beispiel kann man a(x, ξ) = 〈ξ〉σ(x) betrachten, wobei σ(x) eine
reellwertige Funktion aus S(Rn) ist, die man als variable Glattheit interpretieren
kann. Operatoren dieses Typs und die zugehörigen Funktionenräume W k,a

p (Rn)
mit der Norm

‖u|Lp‖ + ‖Ak(x,Dx)u|Lp‖

wurden zum Beispiel von Unterberger und Bokobza in [30],[31], Visik und Es-
kin in [32],[33], Volevic und Kagan in [34] oder Beauzamy in [2] zwischen 1965
und 1972 sowie eine verallgemeinerte Klasse von Pseudodifferentialoperatoren
von Beals 1981 in [1] betrachtet. Fast alle in diesen Arbeiten auftauchenden
Funktionenräume sind vom Sobolev- oder Besselpotential-Typ. Besov-Räume
mit variabler Glattheit wurden zuerst von Leopold 1987 in [13] definiert. Seine
Definition der Räume Bs,a

p,q (R
n) mit der Norm

‖u|Bs,a
p,q (R

n)‖ =

(
∞∑

j=0

2jsq‖ϕa
j (x,Dx)u|Lp‖

q

)1/q

basiert auf einer Zerlegung {ϕa
j (x, ξ)}

∞
j=0 von R

n
x × R

n
ξ , die von Symbolen a(x, ξ)

geeigneter Pseudodifferentialoperatoren einer bestimmten Klasse erzeugt wird.
In den folgenden Jahren veröffentlichte Leopold mehrere Arbeiten zu diesen
Räumen, vergleiche [14], [15] und [16], in denen er beispielsweise den Zusam-
menhang (

Lp(R
n),W k,a

p (Rn)
)
Θ,q

= BΘk,a
p,q (Rn)



bewies. In [13] ist auch eine Charakterisierung von Bs,a
p,q (R

n) mittels Differenzen
mit variabler Schrittweite enthalten. Dies war der Ausgangspunkt für Besov,
um Funktionenräume mit variabler Glattheit mit Hilfe verschiedener gewichteter
Differenzen zu beschreiben, vergleiche [3], [4] und [5]. Es zeigte sich, dass dieser
Zugang dieselben Räume Bs,a

p,q (R
n) lieferte. Auch eine andere Klasse von Funk-

tionenräumen weist Verbindungen zu diesen Räumen auf. Die Einbettung

W σ(x)
p (Rn) ⊂ Lq(x)(R

n), wenn 1 < p ≤ inf
x
q(x) und inf

x
(s(x) + n/q(x)) > n/p,

wobei W
σ(x)
p (Rn) ein Spezialfall der Räume W 1,a

p (Rn) ist, vergleiche [16], liefert
einen interessanten Zusammenhang zwischen den Räumen mit variabler Glattheit
und den Räumen Lq(x) mit variabler Integrabilität. Diese Räume wurden zum
Beispiel von Kovacik und Rakosnik 1991 in [12] oder später von Samko studiert,
vergleiche [20] für Details und mehr Referenzen.
Aktuelles Interesse an Funktionenräumen mit variabler Glattheit gibt es auch
aus einer anderen Richtung. Lokale Informationen über das Glattheitsverhalten
von Funktionen lassen sich mittels Wavelet-Zerlegungen gewinnen. Eine beliebige
Funktion f aus einem Besov-Raum kann als

f(x) =
∑

l,j,m

λl
j,m(f)Ψl(2jx−m)

geschrieben werden, wobei Ψl fixierte Funktionen mit kompaktem Träger und
λl

j,m(f) von f abhängige komplexe Zahlen sind. Auf diesem Weg werden die

sogenannten mikrolokalen Räume Cs,s′(x0) dadurch charakterisiert, dass man

|λl
j,m(f)| ≤ c2−js(1 + |m− 2jx0|)−s′

für alle j ∈ N0, m ∈ Z
n und 1 ≤ l ≤ L ∈ N fordert. Diese Charakterisierung

wurde von Jaffard und Meyer in [11] gegeben, wo diese Räume untersucht wur-
den. Die Räume Cs,s′(x0) beschreiben das Glattheitsverhalten in einem Punkt
x0 ∈ R

n und seiner Umgebung und sind speziell auf die Untersuchung isolierter
Singularitäten zugeschnitten, vergleiche [11].
In dieser Arbeit werden wir einen anderen Zugang verfolgen und gehen dabei
folgendermaßen vor.
In Abschnitt 2 wiederholen wir grundlegende Definitionen, legen die Notation
fest und stellen bekannte Resultate bereit, die wir im Weiteren verwenden.
Die Funktionenräume mit variabler GlattheitBS,s0

p (Rn), wobei die Glattheit durch
eine Funktion S : x 7→ s(x) bestimmt wird und s0 ∈ R die globale Mindest-
glattheit bezeichnet, definieren wir in Abschnitt 3, zeigen, dass es sich um einen
Banachraum handelt und geben einige Grundeigenschaften an. Dann beweisen
wir eine äquivalente Norm und mittels dieser können wir klassische Aussagen über
punktweise Multiplikatoren und Einbettungen in Besov-Räumen für die Räume
BS,s0

p (Rn) verallgemeinern.



In den Abschnitten 4 und 5 beschäftigen wir uns mit verschiedenen Wavelet-
Zerlegungen. Dabei gehen wir jeweils von bestimmten Zerlegungen aus, die von
Triebel in [28] und [29] behandelt wurden, und treffen Aussagen über lokales Ver-
halten von Funktionen mittels dieser Wavelet-Techniken. Dabei beweisen wir die
entscheidenden Hilfsmittel für Abschnitt 6.
In diesem Abschnitt formulieren wir unsere Hauptresultate, die zeigen, dass sich
die Räume BS,s0

p (Rn) durch spezielle Folgenraumnormen von Waveletkoeffizien-
ten charakterisieren lassen. Das bedeutet, die Kenntnis der Waveletkoeffizien-
ten einer Funktion f gibt Aufschluss über das lokale Glattheitsverhalten von f .
Dieser Zusammenhang ist der Schlüssel für die weiteren Untersuchungen. In Ab-
schnitt 6.3 beweisen wir auf diesem Weg, dass die schon erwähnten mikrolokalen
Räume Cs,s′(x0) in einem gewissen Sinn mit BS,s0

∞ (Rn) zusammenfallen, falls

s(x) =

{
s : x = x0

s+ s′ : sonst

und s0 < 1/p gilt.
Im letzten Abschnitt benutzen wir die Charakterisierungen aus Abschnitt 6, um
spezielle Probleme zu behandeln. Zum einen zeigen wir, dass die Einbettungen
aus Abschnitt 3 scharf sind, und zum anderen geben wir eine Teilantwort auf die
folgende interessante Frage: Ist es möglich für ein vorgegebenes Glattheitsverhal-
ten s(x) eine Funktion f zu konstruieren, die genau dieses Verhalten aufweist?
Für ein spezielles s(x) geben wir eine explizite Konstruktion für eine solche Funk-
tion f an.



1 Introduction

We study function spaces with varying smoothness. These spaces are supposed
to classify functions with different smoothness behavior in different domains or
points, for example functions with local singularities. Also special differential
operators with degenerations, for instance at the boundary of a domain, require
function spaces that reflect these degenerations. A forerunner of such spaces, of
Sobolev-type, can be characterized by the norm

‖u|Wm′

p (Rn)‖ + ‖̺(x)u|Wm
p (Rn)‖

with m > m′ and a smooth funktion ̺(x) that vanishes on a domain Ω. Here the
function u has to satisfy the smoothness degree m′ globaly, but outside of Ω even
the degree m. From a more general point of view, such spaces can be described
by using special pseudodifferential operators. Such operators are defined by

A(x,Dx)u(x) = (2π)−n

∫
eixξa(x, ξ)û(ξ)dξ,

where û denotes the Fourier transform of u and a(x, ξ) is the so-called symbol of

A. As an example, one can study the case a(x, ξ) = 〈ξ〉σ(x), where σ(x) is a real
valued function belonging to S(Rn) that can be interpreted as varying smooth-
ness. Operators of this type and the corresponding function spaces W k,a

p (Rn)
with the norm

‖u|Lp‖ + ‖Ak(x,Dx)u|Lp‖

have been studied, for example, by Unterberger and Bokobza in [30],[31], Visik
and Eskin in [32],[33], Volevic and Kagan in [34] or Beauzamy in [2] between
1965 and 1972 as well as a more general class of pseudodifferential operators by
Beals 1981 in [1]. Almost all function spaces that appeared in these papers were
of Sobolev- or Besselpotential-type. Besov spaces with varying smoothness were
first defined by Leopold 1987 in [13]. His definition of the spaces Bs,a

p,q (R
n) with

the norm

‖u|Bs,a
p,q (R

n)‖ =

(
∞∑

j=0

2jsq‖ϕa
j (x,Dx)u|Lp‖

q

)1/q

is based on a resolution {ϕa
j (x, ξ)}

∞
j=0 of R

n
x × R

n
ξ , that is induced by symbols

a(x, ξ) of suitable pseudodifferential operators belonging to a certain class. There-
after, Leopold published several papers concerning these spaces, see [14], [15] and
[16], in which, for instance, he proved the relation

(
Lp(R

n),W k,a
p (Rn)

)
Θ,q

= BΘk,a
p,q (Rn).

His dissertation [13] also contains a characterization of Bs,a
p,q (R

n) in terms of dif-
ferences with variable steps. That was the starting point from which Besov

8



described function spaces of varying smoothness by means of differently weighted
differences, see [3], [4] and [5]. It turned out that this approach produced the same
spaces Bs,a

p,q (R
n). There is another class of function spaces having connections to

these spaces. The embedding

W σ(x)
p (Rn) ⊂ Lq(x)(R

n), if 1 < p ≤ inf
x
q(x) and inf

x
(s(x) + n/q(x)) > n/p,

where W
σ(x)
p (Rn) is a special case of spaces W 1,a

p (Rn), see [16], gives an interesting
relation between the spaces with varying smoothness and the spaces Lq(x) with
varying integrability. These spaces have been studied, for example, by Kovacik
and Rakosnik 1991 in [12] or later on by Samko, see [20] for details and more
references.
There is also current interest on function spaces with varying smoothness from
another point of view. It is possible to get local information about the smoothness
behavior of a function by using wavelet techniques. An arbitrary function f
belonging to a Besov space can be written as

f(x) =
∑

l,j,m

λl
j,m(f)Ψl(2jx−m),

where Ψl are fixed funktions with compact support and λl
j,m(f) are complex

numbers depending on f . In this way the so-called two-microlocal spaces Cs,s′(x0)
can be characterized by demanding

|λl
j,m(f)| ≤ c2−js(1 + |m− 2jx0|)−s′

for all j ∈ N0, m ∈ Z
n and 1 ≤ l ≤ L ∈ N. This characterization was given by

Jaffard and Meyer in [11], where these spaces were studied. The spaces Cs,s′(x0)
describe the smoothness behavior at a point x0 ∈ R

n and its neighborhood. They
are preferrently used for consideration of local singularities, see [11].
We choose a different approach for our investigations. The plan of this work is
the following.
We start by recalling basic definitions in section 2. Thereafter, we fix the notation
and collect some known results that we will use in the sequel.
In section 3, we define function spaces of varying smoothness BS,s0

p (Rn), where
the function S : x 7→ s(x) determines the smoothness pointwise and s0 ∈ R is
the global smoothness parameter. Then we prove that this space is a Banach
space and give some basic properties. After that we provide an equivalent norm
in BS,s0

p (Rn), which enables us to generalize classical assertions about pointwise
multipliers and embeddings in Besov spaces for the spaces of varying smoothness.
In the sections 4 and 5 we study different wavelet decompositions. The starting
points are decompositions that have been treated by Triebel in [28] and [29]. We
prove some assertions concerning local behavior of functions using these wavelet
techniques and provide the main tools for section 6.

9



In this section we formulate our main results. That is to say, we characterize the
spaces BS,s0

p (Rn) by using special sequence space norms of wavelet coefficients.
That means, that the knowledge about the wavelet coefficients of a function f
gives information about the local smoothness behavior of f . This relation is the
key for our further investigaions. Using it, we prove in section 6.3 that the two-
microlocal spaces Cs,s′(x0) mentioned above are in some sense equal to BS,s0

∞ (Rn),
if

s(x) =

{
s : x = x0

s+ s′ : otherwise

and s0 < 1/p hold.
In the last section we use the characterizations from section 6 to treat specific
problems. As the first problem, we show that the embeddings from section 3 are
optimal. The second problem concerns the following interesting question: Given
smoothness behavior s(x), is it possible to construct a function f that satisties
this behavior exactly? We give a partial answer by explicitely constructing such
a function for a special chosen s(x).

10



2 Preliminaries

In this section we provide all definitions, results and the notation that we shall
use in the sequel. For the proofs, the references will be given. In the first part we
consider function spaces on R

n and recall some results that we need as important
tools throughout the work. The same is done in the second part of this section
for spaces on domains.

2.1 Function Spaces on R
n

We start by briefly recalling the definition of Besov spaces on R
n. We follow the

Fourier-analytical approach.
Let ϕ0 ∈ S(Rn) with

ϕ0(x) = 1 if |x| ≤ 1 and ϕ0(x) = 0 if |x| ≥ 3/2. (2.1)

We put
ϕ(x) = ϕ0(x) − ϕ0(2x) and ϕj(x) = ϕ(2−jx) (2.2)

for j ∈ N. Then
∞∑

j=0

ϕj(x) = 1

and (ϕj)
∞
j=0 is called a dyadic resolution of unity in R

n. We denote by ϕ̂ the
Fourier transform of ϕ, and by ϕ∨, its inverse Fourier transform.

Definition 2.1 Let 0 < p ≤ ∞, s ∈ R and (ϕj)
∞
j=0 be the above resolution of

unity. Then

Bs
p(R

n) =



f ∈ S ′(Rn) : ‖f |Bs

p(R
n)‖ =

(
∞∑

j=0

2jsp‖(ϕj f̂)∨|Lp(R
n)‖p

)1/p

<∞





with the usual modification for p = ∞.

This is the well-known definition of ordinary Besov spaces Bs
p,q(R

n) for the special
case p = q. These spaces have been introduced by O.V. Besov in 1959/60 for
s > 0, 1 < p < ∞ and 1 ≤ q < ∞ in terms of derivatives and differences. The
Fourier analytical characterization is due to J. Peetre 1967, and was extended to
the full range for s and p in 1973 also by J. Peetre. There are many books and
papers dealing with these spaces, we refer to [22] for a detailed description of the
properties of Bs

p,q(R
n) and a list of references. Later we shall give some properties

of the Besov spaces explicitely, but only those we need for our purpose. Here we
remark that the so-defined spaces are quasi-Banach spaces (Banach spaces for
1 ≤ p ≤ ∞) that are independent of the given resolution of unity (ϕj)

∞
j=0.

11



Another space for which we give the definition here is the so-called Hölder-
Zygmund space Cs(Rn), first introduced by Zygmund 1945 as a generalization
of the Hölder spaces. For a function f ∈ Lp(R

n) we define the well-known differ-
ences by

∆1
hf(x) = f(x+ h) − f(x) and ∆k+1

h f(x) = ∆1
h(∆

k
hf(x))

for k ∈ N and x, h ∈ R
n.

Definition 2.2 Let s > 0 and k ∈ N with k > s, then

Cs(Rn) = {f ∈ C(Rn) : ‖f |Cs(Rn)‖ <∞} ,

where
‖f |Cs(Rn)‖ = ‖f |C(Rn)‖ + sup

x∈Rn

0<|h|≤1

|h|−s|∆k
hf(x)|.

Here the space C(Rn) is the usually normed space of bounded, uniformly con-
tinuous functions. The space Cs(Rn) fits in the scale of the Besov spaces in the
following way

Cs(Rn) = Bs
∞(Rn) for s > 0.

Now, we list the properties of the Besov spaces for which we shall prove coun-
terparts for the spaces of varying smoothness in the corresponding sections. We
start to recall a result concerning pointwise multipliers where we need both the
Besov spaces and the Hölder-Zygmund spaces defined above. For the proof we
refer to Theorem 2.8.2. and the following Corollary in [22].

Theorem 2.1 Let 0 < p ≤ ∞, s ∈ R and

̺ > max

(
s, n
( 1

min(p, 1)
− 1
)
− s

)
.

Then every g ∈ C̺(Rn) is a multiplier for Bs
p(R

n). In other words, f → gf yields
a bounded linear mapping from Bs

p(R
n) into itself, and there exists a positive

constant c such that

‖gf |Bs
p(R

n)‖ ≤ c‖g|C̺(Rn)‖ ‖f |Bs
p(R

n)‖

holds for all g ∈ C̺(Rn) and all f ∈ Bs
p(R

n).

Of course, pointwise multiplication in general must be interpreted in the distri-
butional sense, see 2.8.1. in [22]. The next assertion concerns embeddings bet-
ween Besov spaces with different metrics.
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Theorem 2.2 Let 0 < p1 ≤ p2 ≤ ∞ and −∞ < s2 ≤ s1 <∞. Then

Bs1
p1

(Rn) ⊂ Bs2
p2

(Rn) if and only if s1 −
n

p1

≥ s2 −
n

p2

.

The proof is covered by Theorem 2.2.3 in [19]. The following Theorem gives
different equivalent norms for the Besov spaces and is related to the mapping
property of the operator I − ∆, where I denotes the Identity and

∆ =
n∑

i=1

∂2

∂x2
i

is the Laplacian. For a real number σ the operator (I − ∆)σ is defined by

(I − ∆)σf = ((1 + |x|2)σf̂)∨ for f ∈ S ′(Rn).

Theorem 2.3 Let −∞ < s < ∞, m ∈ N, 0 < p ≤ ∞ and τ < s. If σ ∈ R

then (I − ∆)σ maps Bs
p(R

n) isomorphically onto Bs−2σ
p (Rn) and the following

expressions

‖(I − ∆)σf |Bs−2σ
p (Rn)‖, (2.3)

∑

|α|≤m

‖Dαf |Bs−m
p (Rn)‖, (2.4)

and ‖f |Bτ
p (Rn)‖ +

∑

|α|=m

‖Dαf |Bs−m
p (Rn)‖ (2.5)

are equivalent quasi-norms in Bs
p(R

n).

The formulas (2.3) and (2.4) are given by Theorem 2.3.8.(i) in [22]. As in the
proof given there, one can use Fourier Multipliers to prove the equivalent norm
(2.5).
The last two assertions we want to recall in this subsection concern dilation
properties of the Besov spaces.

Proposition 2.1 Let 0 < p ≤ ∞ and s < 0. Then there exists a constant c > 0
such that for all λ ∈ (0, 1],

‖f(λ·)|Bs
p(R

n)‖ ≤ cλs−n/p‖f |Bs
p(R

n)‖ for all f ∈ Bs
p(R

n).

Proposition 2.2 Let 0 < p ≤ ∞ and ∞ > s > max(0, n(1/p− 1)). Then there
exists a constant c > 0 such that for all λ ∈ (0, 1],

‖f(λ−1·)|Bs
p(R

n)‖ ≤ cλ−(s−n/p)‖f |Bs
p(R

n)‖ for all f ∈ Bs
p(R

n).

These two propositions can be found in [8], 2.3.1, but the second one already
appeared in [22], 3.4.1.
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2.2 Function Spaces on Domains

To define the Besov spaces on domains we follow the usual procedure of re-
striction. Although it is possible to work with much more general domains, we
consider only bounded domains in R

n with smooth boundaries because later on
we shall work with balls only.

Definition 2.3 Let Ω be a domain in R
n, 0 < p ≤ ∞ and s ∈ R, then

Bs
p(Ω) = {f ∈ S ′(Rn) : there exists g ∈ Bs

p(R
n) with g|Ω = f} (2.6)

with
‖f |Bs

p(Ω)‖ = inf ‖g|Bs
p(R

n)‖,

where the Infimum is taken over all g in the sense of (2.6).

Now, we list the counterparts of the corresponding properties of Bs
p(R

n) for the
spaces on Ω.

Theorem 2.4 Let 0 < p ≤ ∞, s ∈ R and

̺ > max

(
s, n
( 1

min(p, 1)
− 1
)
− s

)
.

Then every g ∈ C̺(Ω) is a multiplier for Bs
p(Ω). In other words, f → gf yields a

bounded linear mapping from Bs
p(Ω) into itself and there exists a positive constant

c such that
‖gf |Bs

p(Ω)‖ ≤ c‖g|C̺(Ω)‖ ‖f |Bs
p(Ω)‖

holds for all g ∈ C̺(Ω) and all f ∈ Bs
p(Ω).

We refer to 3.3.2. in [22].

Theorem 2.5 Let 0 < p1, p2 ≤ ∞ and −∞ < s2 ≤ s1 <∞. Then

Bs1
p1

(Ω) ⊂ Bs2
p2

(Ω) if and only if s1 −
n

p1

≥ s2 −
n

p2

.

The proof is covered by 2.4.4 in [19].

Theorem 2.6 Let −∞ < s < ∞, m ∈ N, 0 < p ≤ ∞ and τ ≤ s. Then the
following expressions

∑

|α|≤m

‖Dαf |Bs−m
p (Ω)‖, (2.7)

‖f |Bτ
p (Ω)‖ +

∑

|α|=m

‖Dαf |Bs−m
p (Ω)‖ (2.8)

are equivalent quasi-norms in Bs
p(Ω).
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Formula (2.7) is given by Theorem 3.3.5. in [22]. Formula (2.8) can be proved
indirectly. We sketch the method here. First one proves, that

‖f |Bs−m
p (Ω)‖ +

∑

|α|=m

‖Dαf |Bs−m
p (Ω)‖ (2.9)

is an equivalent quasi-norm in Bs
p(Ω) by using (2.7). One side of the desired

estimate is obvious. To prove the other direction we assume the converse, that is
to say there exists a sequence (fj)

∞
j=1 such that

1 = ‖Dαfj|B
s−m
p (Ω)‖ ≥ j

(
‖fj|B

s−m
p (Ω)‖ +

∑

|α|=m

‖Dαfj|B
s−m
p (Ω)‖

)

holds for 0 < |α| < m. Because Bs
p(Ω) is compactly embedded into Bs−1

p (Ω) we
find that the sequence (fj)

∞
j=1 converges in both spaces to a function f . The norm

of f in Bs−1
p (Ω) is greater or equal to one, because of our assumption. On the

other hand the norm of fj in Bs−m
p (Ω) tends to zero as j tends to infinity. That

is a contradiction which proves the desired direction. Finally, to obtain formula
(2.8) from (2.9) one has to follow a very similar idea.
In all the assertions stated so far, constants appeared that may depend on Ω in
different ways. As we will see in section 3, we need to control these dependencies
of the constants on Ω. As already mentioned we shall work with balls, typically
they are centered in a point x ∈ R

n and have the radius 2−K for a natural number
K. By an easy translation argument the point x does not influence the constants
at all. Therefore we are interested in the influence of K. A very important
property of Besov spaces on domains in this sense is the so-called homogeneity
property. We denote by Bx,r the ball with radius r > 0 centered in x ∈ R

n. In
the case x = 0 we omit it and write only Br.

Proposition 2.3 Let 1 < p ≤ ∞, −∞ < s < 1/p and 0 < λ ≤ 1, then

‖f(λ·)|Bs
p(B1)‖ ∼ λs−n/p‖f |Bs

p(Bλ)‖, (2.10)

where the equivalence constants are independent of f and λ.

For the proof we refer to 3.9(iii) in [25]. Because we will use it very intensively
throughout the work, we add a short discussion about this remarkable property.
Discussion: Let 0 > s2 > s1 and 1 < p ≤ ∞. Putting λ = 2−K we have by
formula (2.10)

2−K(s1−n/p)‖f |Bs1
p (B2−K )‖ ∼ ‖f(2−K ·)|Bs1

p (B1)‖

≤ c‖f(2−K ·)|Bs2
p (B1)‖

∼ 2−K(s2−n/p)‖f |Bs2
p (B2−K )‖

15



and, hence,
‖f |Bs1

p (B2−K )‖ ≤ c2−K(s2−s1)‖f |Bs2
p (B2−K )‖, (2.11)

or
2−K(s1−s0)‖f |Bs1

p (B2−K )‖ ≤ c2−K(s2−s0)‖f |Bs2
p (B2−K )‖, (2.12)

for a real number s0 where the constant c is independent of f and K. These
estimates reflect a rather typical situation for our work, and show how to control
the dependence of the constants on K. That is to say, first we shift the problem
to the ball Bx,1, then we use known results for Besov spaces on domains and
finally shift back to Bx,2−K . Unfortunately this strategy is obviously restricted to
s < 1/p, but one direction of (2.10) can be generalized without any restriction
for s ∈ R.

Proposition 2.4 Let 1 < p ≤ ∞, s ∈ R and 0 < λ ≤ 1, then

‖f(λ·)|Bs
p(B1)‖ ≥ cλs−n/p‖f |Bs

p(Bλ)‖, (2.13)

where the equivalence constants are independent of f and λ.

For s > 0 this is an easy consequence of Definition 2.3 and Proposition 2.2. The
only case not yet covered is s = 0 and p = ∞. But, in that case, we can prove it
directly with the same idea as was used in the proof of Proposition 1, 3.4.1., in
[22]. In any case, the first step of the above strategy can be maintained for all s.
In 3.2 we will describe how to maintain also the last step.
In section 3 it will become clear that the dependence of the constants on the
smoothness parameter s, which depends on x and K, must be controlled for all
the previous estimates too. In some cases this can be done directly by observing
the constants appearing in the original proofs, for which the references were given.
But in most cases we can use interpolation arguments to ensure that if s1 ≤ s ≤ s2

for two real numbers s1, s2 then the constants can be chosen independent of s.

Remark 2.1 From now on we denote by the symbol c all kinds of real numbers
with different dependencies, but they are always meant to be independent of f , x
and K.
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3 The space BS,s0
p (Rn)

We start this section by roughly describing our motivation. Suppose we have been
given two functions f1, f2 with the following properties. Let f1 have a singularity
at a point x0 ∈ R

n such that f1 ∈ Bs
p(R

n) for some p and s but f1 /∈ Bs+ε
p (Rn)

for any ε > 0. In all points x 6= x0 let f1 be a smooth function. Now let f2

have many singularities of the above type. Then both functions belong to the
same Besov space even though f1 is much smoother than f2 in the sense that
f1 ∈ C∞(Rn \ Ux0) for every neigborhood Ux0 of x0. Our aim is to construct a
scale of function spaces with which we are able to distinguish between f1 and f2

for example, which means that such a space should reflect pointwise smoothness
behavior of its elements. In this section we give the definition of this scale of
spaces, prove some basic properties and look at an example.

3.1 Definition and basic assertions

To take pointwise smoothness behavior into account, we need a function that
gives for every x ∈ R

n a smoothness value s(x). Such a function should somehow
represent the typical situation, where pointwise jumps to lower smoothness levels
are allowed. The definition for the appropriate class reads as follows.

Definition 3.1 A real-valued function S : x 7→ s(x) on R
n is called lower semi-

continuous, if for any t ∈ R

Ωt = {x ∈ R
n : s(x) > t}

is an open set.

It is easy to verify that such a function has the following property.
A real valued-function S : x 7→ s(x) on R

n is lower semi-continuous if, and only
if, for any x0 ∈ R

n and any ε > 0 there is a number τ = τ(x0, ε) > 0 such that

inf
|x−x0|≤τ

s(x) ≤ s(x0) ≤ ε+ inf
|x−x0|≤τ

s(x), (3.1)

see also in [10] (p.242).

Remark 3.1 In the following we will use bounded lower semi-continuous func-
tions S, that means

−∞ < smin = inf
y∈Rn

s(y) ≤ s(x) ≤ sup
y∈Rn

s(y) = smax <∞. (3.2)

We put
sK,x = inf

|y−x|≤2−K+2
s(y)

for x ∈ R
n and K ∈ N, which may increase in K for a fixed x. The reason why

the radius that influences sK,x is chosen as 2−K+2 we shall explain in 4.1.3. Now
we define the main object of our work, the space BS,s0

p (Rn).
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Definition 3.2 Let 1 < p ≤ ∞ and let S be a bounded lower semi-continuous
function in R

n with smin ≥ s0 for a real number s0. Then

BS,s0
p (Rn) =

{
f ∈ S ′(Rn) : ‖f |BS,s0

p (Rn)‖ <∞
}
,

where

‖f |BS,s0
p (Rn)‖ = ‖f |Bs0

p (Rn)‖ + sup
x∈Rn

sup
K∈N

2−K(sK,x−s0)‖f |BsK,x
p (Bx,2−K )‖. (3.3)

First we note that the supremum in the above norm is taken over x and K
where the smoothness parameter and the balls depend on these numbers. That
is the reason for the discussion and the considerations about the constants in the
Preliminaries. Let us describe what happens in the norm. The first term checks
the global smoothness of a given function f , where the supremum term concerns
local improvements by the following procedure. For a fixed point x ∈ R

n we
consider a ball centered in x with radius 2−K and ask if f belongs to the Besov
space with smoothness sK,x ≥ s0 in this ball. Now we increase K and therefore
shrink the ball around x and ask the same question again with respect to a
possibly higher degree of smoothness. We continue this procedure for all K, then
all x, and finally check if the supremum over all these norms multiplied by the
weight factor 2−K(sK,x−s0) is finite. The question arises: why we use this specific
weight? Looking at (2.11) we see that this factor appears in a natural way when
we compare different smoothness levels.
In the sequel we formulate some basic properties of these spaces.

Theorem 3.1 Let 1 < p ≤ ∞ and let S be a bounded lower semi-continuous
function in R

n. Then BS,s0
p (Rn) is a Banach space.

Proof Obviously BS,s0
p (Rn) is a normed space. We prove the completeness. Let

{fl}
∞
l=1 be a Cauchy sequence in BS,s0

p (Rn). Then it is also a Cauchy sequence in
Bs0

p (Rn). Because Bs0
p (Rn) is a complete space, it contains a function f with

‖f − fl|B
s0
p (Rn)‖ −→ 0 for l → ∞. (3.4)

It is sufficient to prove that

‖f − fl|B
S,s0
p (Rn)‖ −→ 0 for l → ∞, (3.5)

because then f ∈ BS,s0
p (Rn) and therefore BS,s0

p (Rn) would be complete. Because
of (3.4) in order to prove (3.5) it is even enough to show that

sup
x∈Rn

sup
K∈N

2−K(sK,x−s0)‖f − fl|B
sK,x
p (Bx,2−K )‖ −→ 0 for l → ∞. (3.6)
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Let ε > 0 be given, then for fixed x,K we have by triangle inequality

2−K(sK,x−s0)‖f − fl|B
sK,x
p (Bx,2−K )‖

≤ ‖fm − fl|B
S,s0
p (Rn)‖ + 2−K(sK,x−s0)‖f − fm|B

sK,x
p (Bx,2−K )‖, (3.7)

where the first term is smaller than ε/2 for l,m ≥ l0(ε/2) because {fl}
∞
l=1 is a

Cauchy sequence in BS,s0
p (Rn). But that also means {fl}

∞
l=1 is a Cauchy sequence

in B
sK,x
p (Bx,2−K ). This space is complete and, therefore, contains a function gx,K

with
‖gx,K − fm|B

sK,x
p (Bx,2−K )‖ ≤

ε

2
for m ≥ m0(ε/2, x,K).

Because the limit element is unique, the restriction of f to Bx,2−K is equal to
gx,K . Looking at (3.7) we see that

2−K(sK,x−s0)‖f − fl|B
sK,x
p (Bx,2−K )‖ ≤ ε for l ≥ l0(ε/2),

which also proves (3.6), because l0 was chosen independent of x and K.
2

The next property follows directly from the Definition of BS,s0
p (Rn).

Proposition 3.1 Let 1 < p ≤ ∞ and let S be a bounded lower semi-continuous
function in R

n with smin ≥ s0 ≥ s1. Then

BS,s0
p (Rn) ⊂ Bs0

p (Rn) and BS,s0
p (Rn) ⊂ BS,s1

p (Rn).

Now we discuss an example that we treat later again.

Example 3.1 Let δ be the Dirac-distribution, defined by

δ(ϕ) = ϕ(0) for ϕ ∈ S(Rn)

and let S : x 7→ s(x) be a bounded lower semi-continuous function in R
n with

s(0) < n/p− n. Then
δ ∈ BS,s0

p (Rn).

Proof We use standard arguments for the first term of (3.3) and get

‖δ|Bs0
p (Rn)‖ =

(
∞∑

j=0

2js0p‖(ϕj δ̂)
∨|Lp(R

n)‖p

)1/p
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∼

(
∞∑

j=0

2js0p2j(np−n)‖ϕ∨|Lp(R
n)‖p

)1/p

∼

(
∞∑

j=0

2jp(s0+n−n/p)

)1/p

(3.8)

≤ c

(
∞∑

j=0

2jp(s(0)+n−n/p)

)1/p

<∞.

For the second term of (3.3) we treat as a first case all K,x with 0 /∈ Bx,2−K+1 .
But then we have

‖δ|BsK,x
p (Bx,2−K )‖ = 0.

In the second case we treat all K,x with 0 ∈ Bx,2−K+1 . Then sK,x ≤ s(0) and
because 2−K(sK,x−s0) ≤ 1 we can estimate

2−K(sK,x−s0)‖δ|BsK,x
p (Bx,2−K )‖ ≤ ‖δ|BsK,x

p (B0,2−K+2)‖

≤ ‖δ|Bs(0)
p (B0,2−K+2)‖

≤ ‖δ|Bs(0)
p (Rn)‖ ≤ c.

That shows that the second term of (3.3) is finite.
2

That result follows our expectation exactly, that is to say that for the Dirac-
distribution we need only a restriction on the smoothness function at the origin.
We will calculate more examples later with the help of decomposition techniques.
Here we add the following assertion.

Proposition 3.2 Let 1 < p ≤ ∞ and S : x 7→ s(x) be a bounded lower semi-
continuous function in R

n. Then for K0 ∈ N

‖f |Bs0
p (Rn)‖ + sup

x∈Rn

sup
K≥K0

2−K(sK,x−s0)‖f |BsK,x
p (Bx,2−K )‖

is an equivalent norm in BS,s0
p (Rn).

This shows that only large values of K, corresponding to small balls, are of
interest.
Proof One direction is obvious. To prove the converse it is enough to show
that

sup
x∈Rn

2−K(sK,x−s0)‖f |BsK,x
p (Bx,2−K )‖ ≤ c sup

x∈Rn

2−K0(sK0,x−s0)‖f |B
sK0,x
p (Bx,2−K0 )‖

holds for K < K0. Therefore we choose points xl ∈ Bx,2−K for l = 1, . . . , L ∈ N

with the property

Bx,2−K ⊂
L⋃

l=1

Bxl,2
−K0 .
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Then by means of this covering we can prove

2−K(sK,x−s0)‖f |BsK,x
p (Bx,2−K )‖ ≤ c2−K(sK,x−s0)

L∑

l=1

‖f |BsK,x
p (Bxl,2

−K0 )

by a procedure of extension and restriction because we have sK,x ≤ sK0,xl
for all

l = 1, . . . , L ∈ N. Now we estimate further

2−K(sK,x−s0)‖f |BsK,x
p (Bx,2−K )‖ ≤ c2−K(sK,x−s0)L‖f |B

sK0,y
p (By,2−K0 )‖

≤ c2−K0(sK0,y−s0)‖f |B
sK0,y
p (By,2−K0 )‖,

where we used 2−K(sK,x−s0) ≤ 1 and 2K0(sK0,y−s0) ≤ 2K0(smax−s0) ≤ c and chose
y ∈ {x1, . . . , xL} such that ‖f |B

sK0,xl
p (Bxl,2

−K0 )‖ is maximal. Taking now the
supremum over all R

n on both sides we arrive at the desired estimate.
2

3.2 An equivalent norm

Now we provide a tool that enables us to preserve the second step of the strategy
discussed in the Preliminaries also but without restrictions on the smoothness
function s(x).

Theorem 3.2 Let 1 < p ≤ ∞ and S : x 7→ s(x) be a bounded lower semi-
continuous function in R

n with smax −m < 1/p for a natural number m. Then
for s0 < 1/p

‖f |Bs0
p (Rn)‖ + sup

K∈N,x∈Rn

2−K(sK,x−s0)
∑

|α|=m

‖Dαf |BsK,x−m
p (Bx,2−K )‖. (3.9)

is an equivalent norm in BS,s0
p (Rn).

Proof Step 1
We start to estimate the supremum in (3.9) from above. By Definition we have

∑

|α|=m

‖Dαf |BsK,x−m
p (Bx,2−K )‖ =

∑

|α|=m

inf
gα

‖gα|B
sK,x−m
p (Rn)‖,

where the infimum is taken over all gα with gα|B
x,2−K

= Dαf . If we allow only

functions h in the infimum for which even h|B
x,2−K

= f holds we have

∑

|α|=m

‖Dαf |BsK,x−m
p (Bx,2−K )‖ ≤

∑

|α|=m

inf
h
‖Dαh|BsK,x−m

p (Rn)‖

≤ inf
h

∑

|α|=m

‖Dαh|BsK,x−m
p (Rn)‖.
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But now by formula (2.5) we arrive at

∑

|α|=m

‖Dαf |BsK,x−m
p (Bx,2−K )‖ ≤ inf

h
c‖h|BsK,x

p (Rn)‖ = c‖f |BsK,x
p (Bx,2−K )‖.

Step 2
For the opposite direction we have by formula (2.13)

2−K(sK,x−s0)‖f |BsK,x
p (Bx,2−K )‖ ≤ c2K(s0−n/p)‖f(2−K ·)|BsK,x

p (Bx,1)‖. (3.10)

We treat the norm on the right-hand side. By applying formula (2.8) we get

‖f(2−K ·)|BsK,x
p (Bx,1)‖ ≤ c‖f(2−K ·)|Bτ

p (Bx,1)‖

+c2−mK
∑

|α|=m

‖(Dαf)(2−K ·)|BsK,x−m
p (Bx,1)‖,

where we used
Dα[f(2−K ·)] = 2−|α|K(Dαf)(2−K ·). (3.11)

If we choose τ = s0 we can use the homogeneity property (2.10) for both terms
because s0 < 1/p and sK,x −m < 1/p. We obtain

‖f(2−K ·)|BsK,x
p (Bx,1)‖ ≤ c2−K(s0−n/p)‖f |Bs0

p (Bx,2−K )‖

+c2−K(sK,x−m−n/p+m)
∑

|α|=m

‖Dαf |BsK,x−m
p (Bx,2−K )‖

and arrive by a simple embedding argument at

‖f(2−K ·)|BsK,x
p (Bx,1)‖ ≤ c2−K(s0−n/p)‖f |Bs0

p (Rn)‖ (3.12)

+c2−K(sK,x−n/p)
∑

|α|=m

‖Dαf |BsK,x−m
p (Bx,2−K )‖,

which inserted into (3.10) gives

2−K(sK,x−s0)‖f |BsK,x
p (Bx,2−K )‖ ≤ c‖f |Bs0

p (Rn)‖

+c2−K(sK,x−s0)
∑

|α|=m

‖Dαf |BsK,x−m
p (Bx,2−K )‖,

which is the desired estimate to prove the second direction of (3.9).
2

The strategy sketched before Proposition 2.4 now works as follows. By this
equivalent norm we can lift the smoothness level for the supremum terms below
1/p on the ball Bx,1 and with the help of (2.10) shift the problem we want to
prove back to the ball Bx,2−K .
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3.3 Further properties

In this section we generalize the results we stated in the Preliminaries for the
usual Besov spaces to the spaces with varying smoothness. We follow exactly the
strategy mentioned in the previous sections.

3.3.1 Pointwise multipliers

The aim of this subsection is to generalize Theorem 2.1.

Theorem 3.3 Let 1 < p ≤ ∞ and let S be a bounded lower semi-continuous
function in R

n. Let s0 < 1/p, then g ∈ C̺(Rn) with ̺ > max(smax,−s0) is a
pointwise multiplier for BS,s0

p (Rn). In other words, f 7→ gf yields a bounded
linear mapping from BS,s0

p (Rn) into itself and there exists a constant c > 0 such
that

‖gf |BS,s0
p (Rn)‖ ≤ c‖g|C̺(Rn)‖ ‖f |BS,s0

p (Rn)‖

holds for all g ∈ C̺(Rn) and all f ∈ BS,s0
p (Rn).

Proof We only have to take care about the Supremum in (3.3) because for the
first part we have

‖gf |Bs0
p (Rn)‖ ≤ c‖g|C̺(Rn)‖ ‖f |Bs0

p (Rn)‖ (3.13)

for ̺ > −s0 by Theorem 2.1. For the term inside of the Supremum by using the
formulas (2.13) and Theorem 2.4 with ̺ > smax we get

2−K(sK,x−s0)‖gf |BsK,x
p (Bx,2−K )‖

≤ c2K(s0−n/p)‖(gf)(2−K ·)|BsK,x
p (Bx,1)‖

≤ c2K(s0−n/p)‖g(2−K ·)|C̺(Bx,1)‖ ‖f(2−K ·)|BsK,x
p (Bx,1)‖.

Looking at Definition 2.2, it is easy to varify, that

‖g(2−K ·)|C̺(Bx,1)‖ ≤ ‖g|C̺(Rn)‖

because in these spaces we only deal with differences. Therefore we have

2−K(sK,x−s0)‖gf |BsK,x
p (Bx,2−K )‖

≤ c2K(s0−n/p)‖g|C̺(Rn)‖ ‖f(2−K ·)|BsK,x
p (Bx,1)‖. (3.14)

In the proof of Theorem 3.2 we find formula (3.12), insert it into (3.14) and obtain

2−K(sK,x−s0)‖gf |BsK,x
p (Bx,2−K )‖

≤ c‖g|C̺(Rn)‖
(
‖f |Bs0

p (Rn)‖ + c2−K(sK,x−s0)
∑

|α|=m

‖Dαf |BsK,x−m
p (Bx,2−K )‖

)
.
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If we now take the supremum over x and K on both sides we finally arrive by
Theorem 3.2 at

sup
x,K

2−K(sK,x−s0)‖gf |BsK,x
p (Bx,2−K )‖ ≤ c‖g|C̺(Rn)‖ ‖f |BS,s0

p (Rn)‖,

which proves the desired assertion.
2

3.3.2 Embeddings

The main goal in this subsection is to generalize Theorem 2.2.

Theorem 3.4 Let 1 < p1 ≤ p2 ≤ ∞ and let S
1 and S

2 be bounded lower semi-
continuous functions in R

n. Then for s1
0, s

2
0 < 1/p

BS1,s1
0

p1
(Rn) ⊂ BS2,s2

0
p2

(Rn) if s1(x) −
n

p1

≥ s2(x) −
n

p2

for all x ∈ R
n

and s1
0 −

n

p1

≥ s2
0 −

n

p2

.

Proof Theorem 2.2 gives the desired estimate for the first term of the norm
(3.3). For the second term we use formula (2.13) and obtain by applying Theorem
2.5

2−K(s2
K,x−s2

0)‖f |B
s2
K,x

p2 (Bx,2−K )‖ ≤ c2K(s2
0−n/p2)‖f(2−K ·)|B

s2
K,x

p2 (Bx,1)‖

≤ c2K(s2
0−n/p2)‖f(2−K ·)|B

s1
K,x

p1 (Bx,1)‖.

Now we use formula (3.12) from the proof of Theorem 3.2 again to get

2−K(s2
K,x−s2

0)‖f |B
s2
K,x

p2 (Bx,2−K )‖

≤ c2K(s2
0−n/p2−s1

0+n/p1)‖f |Bs1
0

p1
(Rn)‖

+c2−K(s1
K,x−n/p1−s2

0+n/p2)
∑

|α|=m

‖Dαf |B
s1
K,x−m

p (Bx,2−K )‖

≤ c‖f |Bs1
0

p1
(Rn)‖ + c2−K(s1

K,x−s1
0)
∑

|α|=m

‖Dαf |B
s1
K,x−m

p (Bx,2−K )‖.

After taking the supremum over x,K on both sides we arrive by Theorem 3.2 at

sup
x,K

2−K(s2
K,x−s2

0)‖f |B
s2
K,x

p2 (Bx,2−K )‖ ≤ c‖f |BS1,s1
0

p1
(Rn)‖,

which proves the assertion.
2
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Corollary 3.1 Let 1 < p ≤ ∞ and let S
1 and S

2 be bounded lower semi-
continuous functions in R

n. Then for s1
0, s

2
0 < 1/p

BS1,s1
0

p (Rn) ⊂ BS2,s2
0

p (Rn) if s1(x) ≥ s2(x) for all x ∈ R
n

and s1
0 ≥ s2

0.

This follows from the last Theorem for the special case p1 = p2.

Corollary 3.2 Let 1 < p ≤ ∞ and let S, S
1 and S

2 be bounded lower semi-

continuous functions in R
n. Then for f1 ∈ B

S1,s1
0

p (Rn) and f2 ∈ B
S2,s2

0
p (Rn) fol-

lows, that for s1
0, s

2
0 < 1/p

f1 + f2 ∈ BS,s0
p (Rn) with s(x) ≤ min(s1(x), s2(x))

and s0 ≤ min(s1
0, s

2
0).

This follows immediately by triangle inequality and Corollary 3.1.
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4 Decomposition with C∞-wavelets

Already some years ago procedures were established to reduce problems in func-
tion spaces to the level of sequence spaces with the help of decomposition tech-
niques. There are many different possible ways to do so, for example by using
molecules, atoms, quarks and wavelets. We want to use special wavelet decom-
positions developed by Triebel in [28] and [29] to characterize the space BS,s0

p (Rn)
in terms of the wavelet coefficients of its elements. This will be done in section
6. In this section we discuss a decomposition by C∞-wavelets for s < 0, its ge-
neralization for all s and investigate how to use these decompositions to get local
smoothness information. All notation in this section is based on [28].

4.1 Wavelet-frames for distributions

Here we only consider the case s < 0.

4.1.1 Definition and Theorem

We define
R

n
++ = {y ∈ R

n : y = (y1, . . . , yn), yi > 0}.

Let k be a non-negative C∞-function in R
n with

supp k ⊂ {y ∈ R
n : |y| < 2J} ∩ R

n
++ (4.1)

for some J ∈ N and ∑

m∈Zn

k(x−m) = 1. (4.2)

For β ∈ N
n
0 , we put kβ(x) = (2−Jx)βk(x) ≥ 0 and define the local means of

f ∈ S ′(Rn) with respect to kβ(x) by

kβ(t, f)(x) =

∫

Rn

kβ(y)f(x+ ty)dy, t > 0, x ∈ R
n (4.3)

and
kβ

j,m(f) = kβ(2−j, f)(2−jm), j ∈ N0, m ∈ Z
n, (4.4)

interpreted in the distributional sense. We abbreviate

∑

β∈Nn
0

∞∑

j=0

∑

m∈Zn

=
∑

β,j,m

,

and define for s ∈ R the following norm

‖k(f)|lp‖s =

(
∑

β,j,m

2j(s−n/p)p|kβ
j,m(f)|p

)1/p

. (4.5)
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In addition let ω ∈ S(Rn) with suppω ⊂ (−π, π)n and ω(x) = 1 if |x| ≤ 2. Then
we define

ωβ(x) =
i|β|2J |β|

(2π)nβ!
xβω(x), (4.6)

with |β| = β1 + · · · + βn and β! = β1! · · · βn!. Let

Ωβ(x) =
∑

m∈Zn

(ωβ)∨(m)e−imx. (4.7)

Definition 4.1 Let ϕ0, ϕ be given by (2.1) and (2.2). Then the mother wavelets
Φβ

M(x) and the father wavelets Φβ
F (x) are given by

(Φβ
M)∨(ξ) = ϕ(ξ)Ωβ(ξ), ξ ∈ R

n

and
(Φβ

F )∨(ξ) = ϕ0(ξ)Ω
β(ξ), ξ ∈ R

n.

Remark 4.1 For all α ∈ N
n
0 , the following holds

∫

Rn

Φβ
M(ξ)ξαdξ = 0.

Furthermore, Φβ
M and Φβ

F are entire analytic functions and we have

Φβ
M(x) =

∑

m∈Zn

(ωβ)∨(m)ϕ̂(x+m), x ∈ R
n (4.8)

and
Φβ

F (x) =
∑

m∈Zn

(ωβ)∨(m)ϕ̂0(x+m), x ∈ R
n. (4.9)

We put

Φβ
j,m(x) =

{
Φβ

F (x−m) : j = 0

Φβ
M(2jx−m) : j ∈ N

(4.10)

and
µ = {µβ

j,m ∈ C : j ∈ N0,m ∈ Z
n, β ∈ N

n
0},

and define ‖µ|lp‖s in the same way as in (4.5).

Theorem 4.1 Let 1 < p ≤ ∞ and s < 0.
(i) Then f ∈ S ′(Rn) is an element of Bs

p(R
n) if, and only if, it can be repre-

sented as
f =

∑

β,j,m

µβ
j,mΦβ

j,m
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with ‖µ|lp‖s <∞, with unconditional convergence in S ′(Rn). Furthermore,

‖f |Bs
p(R

n)‖ ∼ inf ‖µ|lp‖s,

where the infimum is taken over all admissible representations.
(ii) Any f ∈

⋃
s<0B

s
∞(Rn) can be represented as

f =
∑

β,j,m

kβ
j,m(f)Φβ

j,m, (4.11)

unconditional convergence in S ′(Rn). In addition, f ∈ Bs
p(R

n) if, and only if,
‖k(f)|lp‖s <∞.
(iii) Let f ∈ Bs

p(R
n). Then

‖f |Bs
p(R

n)‖ ∼ ‖k(f)|lp‖s,

where the equivalence constants are independent of f , this means that the coeffi-
cients kβ

j,m(f) give an optimal representation.

The proof of this Theorem was given in 2003 by H. Triebel in [28], Theorem 2.
This kind of decomposition stands in a certain sense in contrast to the quarkonial
decompositions, because the functions Φβ

j,m, as building blocks, are not compactly

supported, but the coefficients kβ
j,m(f) are local in the sense that we only need

information about the function f in a small ball around 2−jm. This fact gives us
one possibility to describe local smoothness behavior of a function in terms of its
coefficients kβ

j,m(f), which will be done in 4.1.3.

4.1.2 Examples

(a) Let δ be the Dirac-distribution again, then we try to discover the known
results about which Besov spaces contain δ. Here we can calculate the coefficients
explicitely and get

kβ
j,m(δ) = 2jn(−2−Jm)βk(−m), for m ∈ supp k,

therefore

‖k(δ)|lp‖s =

(
∑

β,j,m

2j(s−n/p)p2jnp|(2−Jm)β|pk(−m)p

)1/p

.

Because of m ∈ supp k, we have |2−Jm| ≤ q < 1, if we put q = supm∈supp k |2
−Jm|.

Then the sum over β is a geometric series. The remaining sum over m is finite
and we obtain

‖k(δ)|lp‖s ∼

(
∞∑

j=0

2j(s−n/p)p2jnp

)1/p

, (4.12)
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which corresponds to formula (3.8). Hence, we have the well-known necessary
and sufficient conditions

δ ∈ Bs
p(R

n), if, and only if, s <
n

p
− n, for p <∞

and
δ ∈ Bs

∞(Rn), if, and only if, s ≤ −n.

(b) Let δ(γ) = Dγδ with δ as in (a) and a multiindex γ. If we now calculate the
coefficients we get

kβ
j,m(δ(γ)) = (−1)|γ|2jn2j|γ|

∑

γ′+γ′′=γ
γ′≤β

c(−2−Jm)β−γ′

(Dγ′′

k)(−m), for m ∈ supp k,

where γ′ ≤ β means γ′i ≤ βi for i = 1, . . . , n. Hence, we have after estimation
from above

‖k(δ(γ))|lp‖s ≤ c

(
∑

β,j,m

2j(s−n/p)p2jnp2j|γ|p|2−Jm|(β−γ′)p

)1/p

.

Now, with arguments similar to those in example (a), we obtain

‖k(δ(γ))|lp‖s ≤ c

(
∞∑

j=0

2j(s−n/p)p2jnp2j|γ|p

)1/p

and can state
δ(γ) ∈ Bs

p(R
n), if s <

n

p
− n− |γ|.

(c) Let g(x) = ψ(x)|x|−α for ψ ∈ C∞(Rn) with suppψ ⊂ {x ∈ R
n : |x| ≤ 1}

and α ∈ R with n− 1 < α < n. We put

f(x) = (Dγg)(x) for γ ∈ N
n
0 with |γ| = 1.

Now we estimate the coefficients kβ
j,m(f) from above. By definition is

kβ
j,m(f) =

∫

y∈supp k

|2−jm+2−jy|≤1

(2−Jy)βk(y)f(2−jm+ 2−jy)dy.

If we put q = supy∈supp k |2
−Jy|, then q < 1 holds. As a first case we only consider

all m with |m| ≥ 2J+1. It follows |2−jm+2−jy| ≥ 2J−j and f(2−jm+2−jy) ∈ Lloc
1 .

Additionally we know

2−j(|m| − 2J) ≤ |2−jm+ 2−jy|.
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If also |m| ≥ 2j+1 for j > J holds, then

{y ∈ R
n : |y| ≤ 2J} ∩ {y ∈ R

n : |2−jm+ 2−jy| ≤ 1} = ∅.

This means that in the first case we can restrict ourselves to all m with the
property 2J+1 ≤ |m| ≤ 2j+1. Then it follows

|kβ
j,m(f)| ≤ cq|β|

∫
|Dγ(ψ(2−jm+ 2−jy)|2−jm+ 2−jy|−α)|dy,

where we integrate only over all y with

2−j(|m| − 2J) ≤ |2−jm+ 2−jy| ≤ 2−j(|m| + 2J).

That gives us

|kβ
j,m(f)| ≤ cq|β|2jn[2−j(|m| − 2J)]n−α−1 = cq|β|2j(α+1)(|m| − 2J)n−α−1. (4.13)

In the remaining case |m| ≤ 2J+1 we integrate in the distributional sense. There-
fore we write

kβ
j,m(f) = 2jn

∫

|y|≤1

(2jy−m)∈supp k

(2j−Jy − 2−Jm)βk(2jy −m)f(y)dy.

This time we put
q′ = sup

y∈Rn

(2jy−m)∈supp k

|2j−Jy − 2−Jm|,

then also q′ < 1 holds, and it follows that

|kβ
j,m(f)| ≤ 2jnq′|β|2j

∫
|ψ(y)||y|−α|(Dγk)(2jy −m)|dy.

By |2jy −m| ≤ 2J and |m| ≤ 2J+1 we also have that |y| ≤ 2−j3 · 2J so that we
can estimate

|kβ
j,m(f)| ≤ c2jnq′|β|2j

∫

|y|≤cJ2−j

|y|−αdy

≤ cq′|β|2j(α+1). (4.14)

Together with (4.13) and (4.14) we obtain

(‖k(f)|lp‖s)
p =

∑

β,j,m

2j(s−n/p)p|kβ
j,m(f)|p

≤
∞∑

j=0

2j(s−n/p)p




∑

β,|m|≥2J+1

|kβ
j,m(f)|p +

∑

β,|m|≤2J+1

|kβ
j,m(f)|p




≤ c
∞∑

j=0

2j(s−n/p)p2j(α+1)p




∑

2j+1≥|m|≥2J+1

(|m| − 2J)(n−α−1)p + 2(J+1)n


 .
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The last sum is bounded from above if (n−α−1)p < −n and we find the following
sufficient condition

f ∈ Bs
p(R

n), if s <
n

p
− α− 1 < −n,

which corresponds for large p to the assertion (ii) of Lemma 1 of 2.3.1 in [19].

4.1.3 Local properties

Let Ω be a domain in R
n, and f, g ∈ S ′(Rn). Then we put

f = g mod C∞ in Ω, (4.15)

if the restriction of f − g to Ω is a C∞-function. Let now f be given as in (4.11),
that means

f =
∑

β,j,m

kβ(2−j, f)(2−jm)Φβ
j,m.

Then we define for x0 ∈ R
n and K ∈ N with K ≥ J

fK,x0

(x) =
∑

β,j,m

K,x0

kβ(2−j, f)(2−jm)Φβ(2jx−m), (4.16)

where the summation is restricted to all j > J +K and m with

Bx0,2−K+1 ∩B2−jm,2−j 6= ∅ . (4.17)

This condition ensures, that only those coefficients are taken into acount, that
depend on information about the function f at most in the ball with radius
2−K+2 centered at x0. This fact is the reason that the radius 2−K+2 appears in
the definition of sK,x in 3.1, which will be used in section 6 again. Now we put

‖k(f)|lp‖
K,x0

s =

(
∑

β,j,m

K,x0

2j(s−n/p)p|kβ(2−j, f)(2−jm)|p

)1/p

(4.18)

with the same restrictions on the summation as in (4.16) and formulate the
following relation between f and fK,x0

.

Proposition 4.1 Let 1 < p ≤ ∞, s ≤ t < 0 and f ∈ Bs
p(R

n). Then

f = fK,x0

mod C∞ in Bx0,2−K (4.19)

and
‖f − fK,x0

|Bt
p(Bx0,2−K )‖ ≤ c2K(t−s)‖k(f)|lp‖s. (4.20)
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Furthermore let s ≤ σ < 0. Then

‖k(f)|lp‖
K,x0

σ <∞, implies fK,x0

∈ Bσ
p (Rn) (4.21)

with
‖fK,x0

|Bσ
p (Rn)‖ ≤ c‖k(f)|lp‖

K,x0

σ , (4.22)

and, conversely,

fK,x0

∈ Bσ
p (Rn), implies ‖k(f)|lp‖

K+2,x0

σ <∞ (4.23)

with
‖k(f)|lp‖

K+2,x0

σ ≤ c‖fK,x0

|Bσ
p (Rn)‖ + c2K(σ−s)‖k(f)|lp‖s. (4.24)

This is a modified version of Corollary 1 in [28]. In particular since (4.20), (4.22)
and (4.24) are also to be taken into consideration, we shall expand the proof given
there. This proposition shows that fK,x0

is a local approximation of f around
x0 and its wavelet coefficients can be asked if the function f belongs locally to a
Besov space with a higher degree of smoothness, see (4.21).
Proof Step 1
Let

〈x〉 = (1 + |x|2)1/2 for x ∈ R
n.

For any given a > 0 there are constants C > 0 and ca > 0 such that

|Dβω∨(x)| ≤ ca2
C|β|〈x〉−a, x ∈ R

n, β ∈ N
n
0 ,

where C is independent of x, a, β and ca is independent of x, β, see [26]. Then by
(4.6) it follows that

|(ωβ)∨(y)| =
i|β|2J |β|

(2π)nβ!
|Dβω∨(x)| ≤ c2−̺|β|〈y〉−a,

where both ̺ > 0 and a > 0 can be arbitrary chosen. Hence, by (4.8) and (4.9)
we get

|DαΦβ(x)| =

∣∣∣∣∣
∑

m∈Zn

(ωβ)∨(m)(Dαϕ̂)(x+m)

∣∣∣∣∣

≤ c2−̺|β|
∑

m∈Zn

〈m〉−a〈x+m〉−a,

because Dαϕ̂ ∈ S(Rn). Now we can split the sum into the parts with |m| ≤ |x|/2
and |m| > |x|/2 and obtain

|DαΦβ(x)| ≤ c2−̺|β|〈x〉−d, (4.25)
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where both ̺ > 0 and d > 0 can be arbitrary chosen and c is independent of β
and x.
Step 2
Let f ∈ Bs

p(R
n). We fix β ∈ N

n
0 and j ∈ N0 in the sum (4.11) and denote the

resulting sum over m ∈ Z
n by fβ,j. By (4.25) we have

|Dαfβ,j(x)| =

∣∣∣∣∣
∑

m∈Zn

kβ
j,m(f)(DαΦβ)(2jx−m)2j|α|

∣∣∣∣∣

≤ c2−j(s−n/p)2j|α|2−̺|β|

∣∣∣∣∣
∑

m∈Zn

2j(s−n/p)kβ
j,m(f)〈2jx−m〉−d

∣∣∣∣∣

≤ c2−j(s−n/p)2j|α|2−̺|β| sup
m

{2j(s−n/p)|kβ
j,m(f)|}

∑

m∈Zn

〈2jx−m〉−d

≤ c2−j(s−n/p)2j|α|2−̺|β|‖k(f)|lp‖s

∑

m∈Zn

〈2jx−m〉−d,

where both d > 0 and ̺ > 0 can be arbitrary chosen. The remaining sum
over m is uniformly bounded for all x ∈ R

n. Then it follows that fβ,j and also
fj =

∑
β fβ,j are C∞-functions in R

n.
Step 3
Now we prove (4.19). We assume x0 = 0. By (4.11) and (4.16) we can write

f − fK,0 =
∑

β,j,m

1
kβ

j,m(f)Φβ
j,m +

∑

β,j,m

2
kβ

j,m(f)Φβ
j,m, (4.26)

where in the first sum the summation is restricted to all j > J +K and m with

|2−jm| ≥ 2−K+1 + 2−j (4.27)

and in the second sum the summation is restricted to all j ≤ J +K. We begin
with the first sum and have by (4.27)

|m| ≥ 2j−K+1. (4.28)

Now, if we assume (4.28) and |x| ≤ 2−K , then |m − 2jx| ≥ 2j−K and we find
similar to the end of Step 2 for all j,m and |x| ≤ 2−K

∣∣∣∣∣D
α

(
∑

m

1
kβ

j,m(f)Φβ
j,m

)
(x)

∣∣∣∣∣ ≤ c2−j(s−n/p)2j|α|2−̺|β|2(n−d)(j−K)‖k(f)|lp‖s, (4.29)

where both d > n and ̺ > 0 can be arbitrary chosen. Now the same arguments as
in Step 2 ensure that the first sum in (4.26) is a C∞-function in the ball B2−K+1 .
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We can choose α = 0 and d in (4.29) with s− n/p+ d− n > 0, then with (2.10)
we can state
∥∥∥∥∥
∑

β,j,m

1
kβ

j,m(f)Φβ
j,m

∣∣∣∣∣B
t
p(B2−K )

∥∥∥∥∥ ≤ c2K(t−n/p)

∥∥∥∥∥
∑

β,j,m

1
kβ

j,m(f)Φβ
j,m

∣∣∣∣∣C(B2−K )

∥∥∥∥∥

≤ c2K(t−n/p)
∑

j>J+K

2−j(s−n/p+d−n)2K(d−n)‖k(f)|lp‖s

≤ c2K(t−n/p)2−(J+K)(s−n/p)2−J(d−n)‖k(f)|lp‖s

≤ c2K(t−s)‖k(f)|lp‖s,

where we included all constants that depend on J into the constant c. Because of
Step 2, it is clear that the second sum in (4.26) is a C∞-function. That already
proves (4.19). But with (4.25) we can state further that
∥∥∥∥∥
∑

β,j,m

2
kβ

j,m(f)Φβ
j,m

∣∣∣∣∣B
t
p(B2−K )

∥∥∥∥∥ ≤ c2K(t−n/p)

∥∥∥∥∥
∑

β,j,m

2
kβ

j,m(f)Φβ
j,m

∣∣∣∣∣C(B2−K )

∥∥∥∥∥

≤ c2K(t−n/p)

J+K∑

j=0

2−j(s−n/p)
∑

β,m

2j(s−n/p)|kβ
j,m(f)Φβ

j,m|

≤ c2K(t−n/p)

J+K∑

j=0

2−j(s−n/p)
∑

β

2−̺|β|
∑

m

2j(s−n/p)|kβ
j,m(f)|〈2jx−m〉−d

≤ c2K(t−n/p)

J+K∑

j=0

2−j(s−n/p)
∑

β

2−̺|β| sup
m

{2j(s−n/p)|kβ
j,m(f)|}

∑

m

〈2jx−m〉−d

≤ c2K(t−s)‖k(f)|lp‖s,

where we used (2.10) again. Together we obtain

‖f − fK,0|Bt
p(B2−K )‖ ≤ c2K(t−s)‖k(f)|lp‖s.

That proves (4.20).
Step 4

We prove (4.21) and (4.22). The function fK,x0
is defined by

fK,x0

=
∑

β,j,m

µβ
j,mΦβ

j,m

with

µβ
j,m =

{
kβ

j,m(f) : j > J +K, Bx0,2−K+1 ∩B2−jm,2−j 6= ∅,
0 : otherwise.

We know that
‖µ|lp‖σ = ‖k(f)|lp‖

K,x0

σ <∞
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because of our assumptions. Now Theorem 4.1 (i) gives fK,x0
∈ Bσ

p (Rn) and

‖fK,x0

|Bσ
p (Rn)‖ ≤ c‖k(f)|lp‖

K,x0

σ .

Step 5

Now we prove (4.23) and (4.24). Let fK,x0
∈ Bσ

p (Rn), s ≤ σ < 0. By Theorem
4.1 (iii) we have

‖k(fK,x0

)|lp‖σ ≤ c‖fK,x0

|Bσ
p (Rn)‖ <∞. (4.30)

Let again x0 = 0. By (4.19) we have for |x| ≤ 2−K−1

f(x) = fK,0(x) + g(x) with g ∈ C∞
0 (B2−K ). (4.31)

For the sequence-norm on the right-hand side of (4.23) we assume

B2−(K+2)+1 ∩B2−jm,2−j 6= ∅

for some j > J +K + 2. Then by (4.31) we have under this restriction

kβ
j,m(f) = kβ

j,m(fK,x0

) + kβ
j,m(g). (4.32)

If we write g = f − fK,x0
then by (4.32), (4.30) and (4.20) we get

‖k(f)|lp‖
K+2,x0

σ ≤ c‖fK,x0

|Bσ
p (Rn)‖ + c2K(σ−s)‖k(f)|lp‖s,

which is (4.24) and proves (4.23).
2

4.2 Wavelet frames for functions

Now we generalize the decomposition in 4.1 for s ∈ R, originally stated in [28].

4.2.1 Definition and Theorem

To show the idea how to circumvent the restriction s < 0 in Theorem 4.1 we
consider the operator

DL = id+ (−∆)L, L ∈ N0,

which maps any space Bs
p(R

n) with s ∈ R and 0 < p ≤ ∞ isomorphically onto
Bs−2L

p (Rn). Let f ∈ Bs
p(R

n) and L ∈ N0 with s−2L < 0. ThenDLf ∈ Bs−2L
p (Rn)

and we have by (4.11)

f =
∑

β,j,m

kβ
j,m(DLf)D−1

L [Φβ(2j · −m)](x).

Now we give the definitions for the resulting wavelets and coefficients.
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Definition 4.2 Let ϕ0, ϕ and Ωβ be given by (2.1), (2.2) and (4.7). Let β ∈ N
n
0

and L ∈ N0. Then the father L-wavelets Φβ,L
F (x), the mother L-wavelets Φβ,L

M (x)
and the remainder L-wavelets Φβ,L

j are given by

(Φβ,L
F )∨(ξ) =

ϕ0(ξ)

1 + |ξ|2L
Ωβ(ξ), ξ ∈ R

n,

(Φβ,L
M )∨(ξ) =

ϕ(ξ)

|ξ|2L
Ωβ(ξ), ξ ∈ R

n,

(Φβ,L
j )∨(ξ) = −

ϕ(ξ)

|ξ|2L(|ξ|2L + 2−2jL)
Ωβ(ξ), ξ ∈ R

n,

if j ∈ N and Φβ,L
j (ξ) = 0 if j = 0.

Remark 4.2 All these wavelets are functions in S(Rn). For L = 0 we basically
obtain the wavelets from Definition 4.1,

Φβ
F = 2Φβ,0

f , Φβ
M = Φβ,0

M = −2Φβ,0
j ,

where j ∈ N and β ∈ N
n
0 .

We generalize (4.10) by

Φβ,L(2jx−m) =

{
Φβ,L

F (x−m) : j = 0

Φβ,L
M (2jx−m) : j ∈ N.

Furthermore, we generalize the local means defined in (4.1)-(4.4). Let now

kβ
L(t, f)(x) =

∫

Rn

kβ
L(y)f(x+ ty)dy, t > 0, x ∈ R

n

be the local means for f ∈ S ′(Rn) with the kernel

kβ
L(x) = (−∆)Lkβ(x) for L ∈ N.

The corresponding norm ‖kL(f)|lp‖s is defined as in (4.5). Then we can formulate
the analogue to Theorem 4.1.

Theorem 4.2 Let 1 < p ≤ ∞, s ∈ R and L ∈ N0 with s− 2L ≤ τ for a negative
number τ ≤ s.
(i) Then f ∈ Bτ

p (Rn) is an element of Bs
p(R

n) if, and only if, it can be repre-
sented as

f =
∑

β,j,m

µβ
j,m(Φβ,L + 2−2jLΦβ,L

j )(2jx−m)

with ‖µ|lp‖s <∞, with unconditional convergence in Bτ
p (Rn). Furthermore,

‖f |Bs
p(R

n)‖ ∼ inf ‖µ|lp‖s,
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where the infimum is taken over all admissible representations.
(ii) Any f ∈ Bs

p(R
n) can be represented as

f =
∑

β,j,m

µβ
j,m(f)(Φβ,L + 2−2jLΦβ,L

j )(2jx−m) (4.33)

with
µβ

j,m(f) =
[
kβ

L(2−j, f) + 2−2jLkβ(2−j, f)
]
(2−jm), (4.34)

unconditional convergence in f ∈ Bs
p(R

n). In addition we have

‖f |Bs
p(R

n)‖ ∼ ‖µ(f)|lp‖s ∼ ‖kL(f)|lp‖s + ‖k(f)|lp‖τ , (4.35)

where the equivalence constants are independent of f .

This Theorem is basically the same as Theorem 3 in [28], only the formula (4.35)
is different than in the original statement, so we prove only that.
Proof We start with a short calculation.

kβ(2−j, DLf)(x) = kβ(2−j, f)(x) +

∫
kβ(y)[(−∆)Lf ](x+ 2−jy)dy

= kβ(2−j, f)(x) + 22jLkβ
L(2−j, f)(x).

Therefore, with (4.34) we have the equality

µβ
j,m(f) = 2−2jLkβ

j,m(DLf),

and Theorem 4.1 gives us

‖µ(f)|lp‖s = ‖k(DLf)|lp‖s−2L ∼ ‖DLf |B
s−2L
p (Rn)‖ ∼ ‖f |Bs

p(R
n)‖.

Altogether we get

‖f |Bs
p(R

n)‖ ≤ c‖kL(f)|lp‖s + c‖k(f)|lp‖s−2L

≤ c‖kL(f)|lp‖s + c‖k(f)|lp‖τ .

Conversely, by the above considerations we have also

‖kL(f)|lp‖s + ‖k(f)|lp‖τ ≤ ‖k(DLf)|lp‖s−2L + c‖k(f)|lp‖τ

≤ c‖f |Bs
p(R

n)‖ + c‖k(f)|lp‖τ

≤ c‖f |Bs
p(R

n)‖,

which completes the proof.
2
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4.2.2 Local properties

In order to use the previous Theorem to get local smoothness information, again
we follow the same procedure as in 4.1.3. In analogy to (4.15), we write

f = g mod Bσ
p in Ω

for a domain Ω in R
n and functions f, g ∈ S ′(Rn), if the restriction of f − g to

Ω belongs to Bσ
p (Ω). Now we discuss which terms of the decomposition in (4.33)

and (4.34) are important concerning local regularity.
Let for f ∈ Bs

p(R
n)

µ′β
j,m(f) = 2−2jLkβ

j,m(f),

then we have
‖µ′(f)|lp‖2L+τ = ‖k(f)|lp‖τ ≤ c‖f |Bs

p(R
n)‖ (4.36)

by Theorem 4.2. Let now f ′ be given in (4.33) with µ′ in place of µ. Because
(4.33) is a universal molecular representation in the sense of [9] (section 5), see
also [28], we find

‖f ′|B2L+τ
p (Rn)‖ ≤ c‖µ′(f)|lp‖2L+τ (4.37)

and therefore f ′ ∈ B2L+τ
p (Rn). Let also

µ′′β
j,m(f) = 2−2jLkβ

L(2−j, f)(2−jm),

then by Theorem 4.2 again we get

‖µ′′(f)|lp‖s+2L = ‖kL(f)|lp‖s ≤ c‖f |Bs
p(R

n)‖ (4.38)

and for
f ′′(x) =

∑

β,j,m

2−2jLkβ
L(2−j, f)(2−jm)Φβ,L

j (2jx−m),

which is also a universal molecular representation in the sense of [9], we have

‖f ′′|Bs+2L
p (Rn)‖ ≤ c‖µ′′(f)|lp‖s+2L. (4.39)

and therefore f ′′ ∈ Bs+2L
p (Rn). In other words we get for the remainder term

f(x) =
∑

β,j,m

kβ
L(2−j, f)(2−jm)Φβ,L(2jx−m) mod B2L+τ

p in R
n. (4.40)

Hence, the right-hand side of this equality is the main term of f as far as local
regularity is concerned. In analogue to 4.1.3 let x0 ∈ R

n and K ∈ N with K ≥ J ,
then we define

fK,x0

L (x) =
∑

β,j,m

K,x0

µβ
j,m(f)(Φβ,L + 2−2jLΦβ,L

j )(2jx−m)
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and

f̃K,x0

L (x) =
∑

β,j,m

K,x0

kβ
L(2−j, f)(2−jm)Φβ,L(2jx−m), (4.41)

where the summation over j,m is always restricted as in (4.17). Let ‖kL(f)|lp‖
K,x0

s

be given by (4.18) with kL in place of k, then we can formulate the analogue to
Proposition 4.1.

Proposition 4.2 Let 1 < p ≤ ∞, s ∈ R and L ∈ N0 with s − 2L ≤ τ for a

negative number τ ≤ s. Let f ∈ Bs
p(R

n) and fK,x0

L , f̃K,x0

L given as above. Then

f = fK,x0

L mod C∞ in Bx0,2−K

and
f = f̃K,x0

L mod B2L+τ
p in Bx0,2−K

with

‖f− f̃K,x0

L |Bt
p(Bx0,2−K )‖ ≤ c2K(t−s)‖kL(f)|lp‖s +c2K(t−τ)‖kL(f)|lp‖τ +c‖k(f)|lp‖τ

(4.42)
for s ≤ t < 2L+ τ . Furthermore, let s ≤ σ < 2L+ τ . Then

‖kL(f)|lp‖
K,x0

σ <∞, implies f̃K,x0

L ∈ Bσ
p (Rn), (4.43)

and, conversely,

f̃K,x0

L ∈ Bσ
p (Rn), implies ‖kL(f)|lp‖

K+2,x0

σ <∞.

This is again a slightly modified version of the corresponding Corollary 2 in [28].
The added line (4.42) will be proved below but the rest of the proof is analogous
to Proposition 4.1 with some modifications according to the previous discussion.
We want to emphasize that because (4.41) is a universal molecular representation
in the sense of [9] again we get the following estimate

‖f̃K,x0

L |Bσ
p (Rn)‖ ≤ c‖kL(f)|lp‖

K,x0

σ , (4.44)

which already proves (4.43).
Proof By using the above notation we have by triangle inequality

‖f−f̃K,x0

L |Bt
p(Bx0,2−K )‖ ≤ ‖f ′|Bt

p(R
n)‖+‖f ′′|Bt

p(R
n)‖+‖f̃L−f̃

K,x0

L |Bt
p(Bx0,2−K )‖,

(4.45)
where

f̃L =
∑

β,j,m

kβ
L(2−j, f)(2−jm)Φβ,L(2jx−m)
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is the right-hand side of (4.40). For the norm of f ′ we know by embedding and
(4.36), (4.37)

‖f ′|Bt
p(R

n)‖ ≤ c‖f ′|B2L+τ
p ‖ ≤ c‖k(f)|lp‖τ (4.46)

and for the norm of f ′′ also by embedding and (4.38), (4.39)

‖f ′′|Bt
p(R

n)‖ ≤ c‖f ′′|B2L+s
p ‖ ≤ c‖kL(f)|lp‖s. (4.47)

Now we take care about the third term on the right-hand side of (4.45) by using
basically the same arguments as in the steps 1-3 of the proof of Proposition 4.1.
At first we write in analogy to (4.26) with x0 = 0

f̃L − f̃K,0
L =

∑

β,j,m

1
kβ

L(2−j, f)(2−jm)Φβ,L(2jx−m)

+
∑

β,j,m

2
kβ

L(2−j, f)(2−jm)Φβ,L(2jx−m), (4.48)

where in the first sum the summation is restricted to all j > J +K and m with

|2−jm| ≥ 2−K+1 + 2−j (4.49)

and in the second sum the summation is restricted to all j ≤ J + K. It is easy
to see that the analogue to formula (4.25)

|DαΦβ,L(x)| ≤ c2−̺|β|〈x〉−d

holds for arbitrary chosen numbers ̺, d > 0. Then we can calculate in the same
way as in step 2 of the proof of Proposition 4.1

∣∣∣∣∣
∑

m

kβ
L(2−j, f)(2−jm)(DαΦβ,L)(2jx−m)2j|α|

∣∣∣∣∣

≤ c2−j(s−n/p)2j|α|2−̺|β|‖kL(f)|lp‖s

∑

m∈Zn

〈2jx−m〉−d,

With the restrictions (4.49) for the first sum in (4.48) we get for |x| ≤ 2−K

∣∣∣∣∣
∑

β,j,m

1
kβ

L(2−j, f)(2−jm)(DαΦβ,L)(2jx−m)2j|α|

∣∣∣∣∣

≤ c
∑

β,j>J+K

2−j(s−n/p+d−n)2j|α|2−̺|β|2K(d−n)‖kL(f)|lp‖s (4.50)

with arbitrary chosen d > n and ̺ > 0 in analogy to (4.29). For the second sum
in (4.48) we find in a similar way

∣∣∣∣∣
∑

β,j,m

2
kβ

L(2−j, f)(2−jm)(DαΦβ,L)(2jx−m)2j|α|

∣∣∣∣∣

≤ c
∑

β,j≤J+K

2−j(r−n/p)2j|α|2−̺|β|‖kL(f)|lp‖r (4.51)

40



for an arbitrary real number r. After these calculations we estimate the third
term of (4.45). We start with (2.13) and get by embedding

‖f̃L − f̃K,x0

L |Bt
p(Bx0,2−K )‖ ≤ c2K(t−n/p)‖(f̃L − f̃K,x0

L )(2−K ·)|Bt
p(Bx0,1)‖

≤ c2K(t−n/p)‖(f̃L − f̃K,x0

L )(2−K ·)|C2L(Bx0,1)‖. (4.52)

We shall use the equivalent norm

‖g|C2L(Ω)‖ ≤ c‖g|C(Ω)‖ + c
∑

|α|=2L

‖Dαg|C(Ω)‖. (4.53)

Then we can estimate by (4.50) with sufficiently large d and (4.51) with r = τ

‖(f̃L − f̃K,x0

L )(2−K ·)|C(Bx0,1)‖ = ‖f̃L − f̃K,x0

L |C(Bx0,2−K )‖

≤ c
∑

β,j>J+K

2−j(s−n/p+d−n)2−̺|β|2K(d−n)‖kL(f)|lp‖s

+ c
∑

β,j≤J+K

2−j(τ−n/p)2−̺|β|‖kL(f)|lp‖τ

≤ c2K(d−n)2−K(s−n/p+d−n)‖kL(f)|lp‖s + c2−K(τ−n/p)‖kL(f)|lp‖τ

≤ c2−K(s−n/p)‖kL(f)|lp‖s + c2−K(τ−n/p)‖kL(f)|lp‖τ . (4.54)

For the derivatives we find by (4.50) with sufficiently large d and (4.51) with
r = s
∑

|α|=2L

‖Dα[(f̃L − f̃K,x0

L )(2−K ·)]|C(Bx0,1)‖

=
∑

|α|=2L

2−K|α|‖[Dα(f̃L − f̃K,x0

L )](2−K ·)|C(Bx0,1)‖

= 2−2LK
∑

|α|=2L

‖[Dα(f̃L − f̃K,x0

L )]|C(Bx0,2−K )‖

≤ c2−2LK
∑

|α|=2L

∑

β,j>J+K

2−j(s−n/p+d−n−|α|)2K(d−n)2−̺|β|‖kL(f)|lp‖s

+c2−2LK
∑

|α|=2L

∑

β,j≤J+K

2−j(s−n/p−|α|)2−̺|β|‖kL(f)|lp‖s

≤ c2−2LK
(
2K(d−n)2−K(s−n/p+d−n−2L)‖kL(f)|lp‖s + c2−K(s−n/p−2L)‖kL(f)|lp‖s

)

≤ c2−K(s−n/p)‖kL(f)|lp‖s (4.55)

Inserting (4.54) and (4.55) with (4.53) into (4.52) we find

‖f̃L − f̃K,x0

L |Bt
p(Bx0,2−K )‖ ≤ c2K(t−s)‖kL(f)|lp‖s + c2K(t−τ)‖kL(f)|lp‖τ

which together with (4.46), (4.47) and (4.45) proves the desired estimate.
2
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5 Decomposition with Cr-wavelets

In contrast to section 4 we discuss now a wavelet decomposition where the build-
ing blocks are Cr-functions but have a compact support. This section is essen-
tially based on [29].

5.1 Definition and Theorem

Let Lj = L = 2n − 1 if j ∈ N and L0 = 1. Then for any number r ∈ N there are
functions ψ0(x) ∈ Cr(Rn) and ψl(x) ∈ Cr(Rn), l = 1, . . . , L, with

suppψ0(x), suppψl(x) ⊂ B2J̃ (5.1)

for a J̃ ∈ N and
∫

Rn

xαψl(x)dx = 0, for α ∈ N
n
0 , |α| ≤ r,

such that
{2jn/2ψl

j,m(x) : j ∈ N0, 1 ≤ l ≤ Lj,m ∈ Z
n}

with

ψl
j,m(x) =

{
ψ0(x−m) : j = 0,m ∈ Z

n, l = 1,
ψl(2j−1x−m) : j ∈ N,m ∈ Z

n, 1 ≤ l ≤ L,

is an orthonormal basis in L2(R
n).

The original version of such a system goes back to I. Daubechies, see [7]. For a
detailed description we refer to [17] and [35].
We want to give the counterpart to Theorem 4.1 with compactly supported
wavelets. For that purpose we need suitable sequence spaces.

Definition 5.1 Let s ∈ R and 0 < p ≤ ∞. Then the space bsp consists of all
sequences

λ = {λl
j,m ∈ C : j ∈ N0, 1 ≤ l ≤ Lj,m ∈ Z

n}

for which the quasi-norm

‖λ|bsp‖ =

(
∑

l,j,m

2j(s−n/p)p|λl
j,m|

p

)1/p

(5.2)

(with the usual mofification for p = ∞) is finite.

The following Theorem was published by Triebel in [29], the proof is also given
there.
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Theorem 5.1 Let s and p given as above. Then there is a natural number r(s, p)
such that for all r > r(s, p) the following is true:
Let f ∈ S ′(Rn), then f ∈ Bs

p(R
n) if, and only if, it can be represented as

f =
∑

l,j,m

λl
j,m(f)ψl

j,m with ‖λ|bsp‖ <∞, (5.3)

with unconditional convergence in S ′(Rn). Furthermore the representation (5.3)
is unique, λl

j,m(f) = 2jn(f, ψl
j,m), and

‖f |Bs
p(R

n)‖ ∼ ‖λ(f)|bsp‖

in the sense of equivalent quasi-norms.
In addition, for p <∞, (5.3) converges unconditionally in Bs

p(R
n) and {ψl

j,m} is
an unconditional Schauder basis in Bs

p(R
n).

Remark 5.1 In [29], Corollary 5, was proved, that in the Theorem one can
choose

r(s, p) = max(s,
2n

p
+
n

2
− s).

This result allows us again to extract local regularity assertions.

5.2 Local properties

We follow the same idea as for the non-compactly supported wavelets. We define
for x0 ∈ R

n and K ∈ N with K ≥ J̃

fK,x0 =
∑

l,j,m

K,x0

λl
j,m(f)ψl

j,m,

where the summation is restricted to all j > J̃ +K and m with

Bx0,2−K+1 ∩B2−jm,2−j 6= ∅ .

The corresponding norm is given by

‖λ(f)|bsp‖
K,x0

=

(
∑

l,j,m

K,x0

2j(s−n/p)p|λl
j,m(f)|p

)1/p

.

Now we can formulate a Proposition which is in some sense the analogue to
Proposition 4.1.
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Proposition 5.1 Let 1 < p ≤ ∞, s < n/p, r > r(t, p) and f ∈ Bs
p(R

n). Then
for s ≤ t

f = fK,x0 mod Cr in Bx0,2−K (5.4)

and
‖f − fK,x0 |Bt

p(Bx0,2−K )‖ ≤ c2K(t−s)‖λ|bsp‖. (5.5)

Furthermore let s ≤ σ. Then

‖λ(f)|bσp‖
K,x0

<∞ implies fK,x0 ∈ Bσ
p (Rn) (5.6)

with
‖fK,x0 |Bσ

p (Rn)‖ ≤ c‖λ(f)|bσp‖
K,x0

. (5.7)

Proof We prove (5.4). We assume x0 = 0 and write

f − fK,0 =
∑

l,j,m

1
λl

j,mψ
l
j,m +

∑

l,j,m

2
λl

j,mψ
l
j,m,

where in the first sum the summation is restricted to all j > J̃ +K and m with

|2−jm| ≥ 2−K+1 + 2−j (5.8)

and in the second sum the summation is restricted to all j ≤ J̃ + K. Now we
estimate

‖f − fK,0|C
r(B0,2−K )‖

≤
∑

|α|≤r

(
sup

|x|≤2−K

∑

l,j,m

1
|λl

j,mD
αψl

j,m(x)| + sup
|x|≤2−K

∑

l,j,m

2
|λl

j,mD
αψl

j,m(x)|

)
. (5.9)

Because of (5.1) we know that

|ψl(2jx−m)| = 0 if |2jx−m| > 2J̃ .

The supremum is taken over |x| ≤ 2−K , this means

|ψl(2jx−m)| = 0 if |2−jm| > 2−K + 2J̃−j. (5.10)

But the sum with superscript 1 in (5.9) fulfills this condition for the summation
over m by (5.8), therefore this sum vanishes. Furthermore we can estimate

‖f − fK,0|C
r(B2−K )‖ ≤ sup

|x|≤2−K

∑

l,j,m

2
|λl

j,m|
∑

|α|≤r

|Dαψl
j,m(x)|

≤
∑

l,j≤J̃+K

2−j(s−n/p)
∑

m

2j(s−n/p)|λl
j,m| sup

|x|≤2−K

∑

|α|≤r

2j|α||(Dαψl)(2jx−m)|

≤ c
∑

l,j≤J̃+K

2−j(s−n/p)‖λ|bsp‖2
jr‖ψl|Cr(Rn)‖

≤ c2−(J̃+K)(s−r−n/p)‖λ|bsp‖. (5.11)
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That proves (5.4). To prove (5.5) we use formula (2.13) and (5.11) to obtain

‖f − fK,0|B
t
p(B2−K )‖ ≤ c2K(t−n/p)‖(f − fK,0)(2

−K ·)|Bt
p(B1)‖

≤ c2K(t−n/p)‖(f − fK,0)(2
−K ·)|Cr(B1)‖

≤ c2K(t−n/p)
(
‖(f − fK,0)(2

−K ·)|C(B1)‖

+
∑

|α|=r

‖Dα[(f − fK,0)(2
−K ·)]|C(B1)‖

)

≤ c2K(t−n/p)
(
‖f − fK,0|C(B2−K )‖

+
∑

|α|=r

2−|α|K‖Dα(f − fK,0)|C(B2−K )‖
)

≤ c2K(t−n/p)‖f − fK,0|C(B2−K )‖ + c2K(t−r−n/p)‖f − fK,0|C
r(B2−K )‖

≤ c2K(t−n/p)2−(J̃+K)(s−n/p)‖λ|bsp‖ + c2K(t−r−n/p)2−(J̃+K)(s−r−n/p)‖λ|bsp‖

≤ c2K(t−s)‖λ|bsp‖.

Now we prove (5.6) and (5.7). By definition we know

fK,x0 =
∑

l,j,m

C l
j,m(f)ψl

j,m

with

C l
j,m(fK,x0) =

{
λl

j,m(f) : j > J̃ +K, Bx0,2−K+1 ∩B2−jm,2−j 6= ∅
0 : otherwise.

In addition we have
‖C|bσp‖ = ‖λ(f)|bσp‖

K,x0

<∞

by assumption. Now Theorem 5.1 gives fK,x0 ∈ Bσ
p (Rn) and

‖fK,x0 |Bσ
p (Rn)‖ ≤ c‖λ(f)|bσp‖

K,x0

.

2

6 Main results

Here we formulate different possibilities to characterize the space BS,s0
p (Rn) by

wavelet coefficients of its elements. This enables us to calculate a few more ex-
amples explicitely, which will be done in 6.2, and to prove the relation between
BS,s0

p (Rn) and the so-called Two-microlocal spaces in 6.3. Furthermore, the re-
sults given here are essential to investigate some special problems as we will see
in section 7.
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6.1 Theorems

We start with the case of C∞-wavelets from section 4.

Theorem 6.1 Let 1 < p ≤ ∞ and let S be a negative lower semi-continuous
function in R

n that is bounded from below. Then there are two constants c1, c2 > 0
such that for all f ∈ BS,s0

p (Rn),

c1‖k(f)|lp‖s0 + c1 sup
K≥J,x∈Rn

2−K(sK,x−s0)‖k(f)|lp‖
K+2,x
sK,x

≤ ‖f |Bs0
p (Rn)‖ + sup

K≥J,x∈Rn

2−K(sK,x−s0)‖f |BsK,x
p (Bx,2−K )‖ (6.1)

≤ c2‖k(f)|lp‖s0 + c2 sup
K≥J,x∈Rn

2−K(sK,x−s0)‖k(f)|lp‖
K,x
sK,x

.

Remark 6.1 Here an unavoidable index-shifting from K to K+2 appears. Other-
wise we would have an equivalent quasi-norm for our space BS,s0

p (Rn).

A first proof of Theorem 6.1 is given by Triebel in [27] but we shall give a shorter
one here.
Proof We only have to take care about the supremum terms because Theorem
4.1 gives the equivalence of the first terms on each side.
Step 1
We start with the left-hand side of (6.1). Let f ∈ Bs0

p (Rn) and

g ∈ BsK,x
p (Rn) with g|Bx,2−K = f |Bx,2−K . (6.2)

Then for all coefficients in the norm

‖k(f)|lp‖
K+2,x
sK,x

we have kβ
j,m(g) = kβ

j,m(f).

Therefore, we have

‖k(f)|lp‖
K+2,x
sK,x

= ‖k(g)|lp‖
K+2,x
sK,x

≤ ‖k(g)|lp‖sK,x
≤ c‖g|BsK,x

p (Rn)‖,

by Theorem 4.1. But because this inequality holds for all g with (6.2), it also
holds for the infimum over all such g and so by Definition 2.3 we get

‖k(f)|lp‖
K+2,x
sK,x

≤ c‖f |BsK,x
p (Bx,2−K )‖.

Step 2

Now we prove the right-hand side of (6.1). We write f = (f − fK,x) + fK,x, then
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the triangle inequality and the formulas (4.20), (4.22) lead to

2−K(sK,x−s0)‖f |BsK,x
p (Bx,2−K )‖

≤ 2−K(sK,x−s0)
(
‖f − fK,x|BsK,x

p (Bx,2−K )‖ + ‖fK,x|BsK,x
p (Bx,2−K )‖

)

≤ 2−K(sK,x−s0)
(
c2K(sK,x−s0)‖k(f)|lp‖s0 + c‖k(f)|lp‖

K,x
sK,x

)

≤ c2−K(sK,x−s0)‖k(f)|lp‖
K,x
sK,x

+ c‖k(f)|lp‖s0 ,

which is the desired estimate.
2

Now we can state a similar result for the generalized decomposition with C∞-
wavelets from 4.2.

Theorem 6.2 Let 1 < p ≤ ∞ and let S : x 7→ s(x) be a bounded semi-continuous
function in R

n with smax−2L ≤ s0 < 0 for a L ∈ N0. Then for all f ∈ BS,s0
p (Rn),

c‖kL(f)|lp‖s0 + c‖k(f)|lp‖s0 + c sup
K≥J,x∈Rn

2−K(sK,x−s0)‖kL(f)|lp‖
K+2,x
sK,x

≤ ‖f |BS,s0
p (Rn)‖ (6.3)

≤ c‖kL(f)|lp‖s0 + c‖k(f)|lp‖s0 + c sup
K≥J,x∈Rn

2−K(sK,x−s0)‖kL(f)|lp‖
K,x
sK,x

.

Proof By Theorem 4.2, formula (4.35) with τ = s0, we know

‖f |Bs0
p (Rn)‖ ∼ ‖kL(f)|lp‖s0 + ‖k(f)|lp‖s0 ,

which means we only have to care about the suprema.
Step 1
The proof of the left hand-side of (6.3) is the same as in the proof of the last
Theorem using Theorem 4.2 instead of Theorem 4.1.
Step 2

For the right-hand side of (6.3) we write f = (f− f̃K,x
L )+ f̃K,x

L . Then the triangle
inequality and the formulas (4.42) with t = sK,x and s = τ = s0 and (4.44) lead
to

2−K(sK,x−s0)‖f |BsK,x
p (Bx,2−K )‖

≤ 2−K(sK,x−s0)
(
‖f − f̃K,x

L |BsK,x
p (Bx,2−K )‖ + ‖f̃K,x

L |BsK,x
p (Bx,2−K )‖

)

≤ 2−K(sK,x−s0)
(
c2K(sK,x−s0)‖kL(f)|lp‖s0 + c‖k(f)|lp‖s0 + c‖kL(f)|lp‖

K,x
sK,x

)

≤ c2−K(sK,x−s0)‖kL(f)|lp‖
K,x
sK,x

+ c‖kL(f)|lp‖s0 + c‖k(f)|lp‖s0 ,

where we used 2−K(sK,x−s0) ≤ 1. That completes the proof.
2

Now we will state the analog Theorem for the case of compactly supported
wavelets from section 5.
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Theorem 6.3 Let 1 < p ≤ ∞ and let S be a bounded lower semi-continuous
function in R

n. Then there are two constants c1, c2 > 0 such that for all functions
f ∈ BS,s0

p (Rn) with s0 < 0,

c1‖λ(f)|bs0
p ‖ + c1 sup

K≥J̃ ,x∈Rn

2−K(sK,x−s0)‖λ(f)|bsK,x
p ‖K+2,x

≤ ‖f |Bs0
p (Rn)‖ + sup

K≥J̃ ,x∈Rn

2−K(sK,x−s0)‖f |BsK,x
p (Bx,2−K )‖ (6.4)

≤ c2‖λ(f)|bs0
p ‖ + c2 sup

K≥J̃ ,x∈Rn

2−K(sK,x−s0)‖λ(f)|bsK,x
p ‖K,x.

The proof works in exactly the same way as for Theorem 6.1, using Theorem 5.1
and the estimates from Proposition 5.1.

Remark 6.2 The assumption f ∈ BS,s0
p (Rn) in the last three Theorems is not

really necessary. The assertions remain true if we assume f ∈ S ′(Rn).

These results show that in order to treat problems concerning local smoothness
behavior of a function it is enough to have information about their wavelet co-
efficients. Especially Theorem 6.3 gives a uniform assertion without restrictions
on the smoothness function s(x) and is used as the main tool in 6.3.

6.2 Examples

Now we calculate three examples to see the usefulness of such norm estimates.
We start with f = δ and verify Example 3.1 again.

Example 6.1 Let S : x 7→ s(x) be a negative lower semi-continuous function in
R

n that is bounded from below with s(0) = n/p− n− ε for ε > 0. Then

δ ∈ BS,smin
p (Rn).

Proof For the first term on the right-hand side of (6.1) we have with (4.12)

‖k(δ)|lp‖smin
≤ ‖k(δ)|lp‖s(0)

≤ c

(
∞∑

j=0

2j(s(0)−n/p)p2jnp

)1/p

<∞.

However, the second term is more interesting

‖k(δ)|lp‖
K,x
sK,x

=

(
∑

β,j,m

K,x
2j(sK,x−n/p)p2jnp|(2−Jm)β|pk(−m)p

)1/p

.
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Again we put q = supm∈supp k |2
−Jm|, then q < 1 holds and we see that

‖k(δ)|lp‖
K,x
sK,x

≤ c

(
∑

j,m

K,x
2j(sK,x−n/p)p2jnpk(−m)p

)1/p

.

In the case 0 6∈ Bx,2−K+2 , we have by j > J +K, K ≥ J and |m| < 2J

|x− 2−jm| ≥ 2−K+2 − 2−K ≥ 2−K+1 + 2−j

and it follows that
Bx,2−K+1 ∩B2−jm,2−j = ∅.

Therefore, we can write

sup
K,x

2−K(sK,x−smin)‖k(δ)|lp‖
K,x
sK,x

= sup
K,x

0∈B
x,2−K+2

2−K(sK,x−smin)‖k(δ)|lp‖
K,x
sK,x

.

For allK,x with 0 ∈ Bx,2−K+2 the relation sK,x ≤ s(0) holds, hence, with |m| < 2J

we can estimate

sup
K,x

2−K(sK,x−smin)‖k(δ)|lp‖
K,x
sK,x

≤ c

(
∞∑

j=2J+1

2j(s(0)−n/p)p2jnp

)1/p

<∞,

where we used 2−K(sK,x−smin) < 1. That proves the assertion.
2

Example 6.2 Let Γ be a d-set and µ the corresponding Radon measure in R
n

with 0 < d < n, hence,

µ(Bγ,r) ∼ rd if γ ∈ Γ = suppµ. (6.5)

Let S : x 7→ s(x) be a negative lower semi-continuous function in R
n that is

bounded from below with

s(x) = −
n− d

p′
− ε if x ∈ Γ,

ε > 0 and 1 = 1/p+ 1/p′. Then

µ ∈ BS,smin
p (Rn).

Proof At first we remark that by (6.5) we can cover Γ with c̃2jd balls of radius
2−j. That means Γ has a non-empty intersection with at most c2jd balls of radius
2−j centered in 2−jm. Now we calculate the coefficients

kβ
j,m(µ) = 2jn

∫

Γ

(2j−Jy − 2−Jm)βk(2jy −m)µ(y)dy.
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If we put
q = sup

y∈Rn

(2jy−m)∈supp k

|2j−Jy − 2−Jm|,

then q < 1 holds, and it follows that

|kβ
j,m(µ)| ≤ c2jnq|β|µ(Γ ∩B2−jm,2J−j).

Now, we estimate

‖k(µ)|lp‖smin
≤

(
∑

j

2j(s(Γ)−n/p)p
∑

β,m

|kβ
j,m(µ)|p

)1/p

and, because of our remark above and |q| < 1, we obtain

‖k(µ)|lp‖smin
≤ c

(
∑

j

2j(−(n−d)/p′−ε−n/p)p2jd2jnp2−jdp

)1/p

≤ c

(
∑

j

2−jεp

)1/p

<∞.

Now we calculate the second term of the norm. In the case Γ ∩ Bx,2−K+2 = ∅ we
have by j > J +K, K ≥ J and |2−jm− γ| < 2J−j for γ ∈ Γ ∩B2−jm,2J−j

|x− 2−jm| ≥ 2−K+2 − 2−K ≥ 2−K+1 + 2−j

and it follows that
Bx,2−K+1 ∩B2−jm,2−j = ∅.

Therefore we can write

sup
K,x

2−K(sK,x−smin)‖k(µ)|lp‖
K,x
sK,x

= sup
K,x

Γ∩B
x,2−K+2 6=∅

2−K(sK,x−smin)‖k(µ)|lp‖
K,x
sK,x

.

But if Γ ∩ Bx,2−K+2 6= ∅, then the relation sK,x ≤ s(Γ) holds, and with
2−K(sK,x−smin) ≤ 1, we obtain

sup
K,x

2−K(sK,x−smin)‖k(µ)|lp‖
K,x
sK,x

≤

(
∑

β,j,m

2j(s(Γ)−n/p)p|kβ
j,m(µ)|p

)1/p

<∞,

as already shown above.
2

For our next example we recall example (c) in subsection 4.1.2.
Let gα(x) = ψ(x)|x|−α for ψ ∈ C∞(Rn) with suppψ ⊂ {x ∈ R

n : |x| ≤ 1} and
α ∈ R with n− 1 < α < n. We put

f(x) = (Dγgα)(x) for γ ∈ N
n
0 with |γ| = 1.
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Example 6.3 Let S : x 7→ s(x) be a lower semi-continuous function in R
n with

s(x) =

{
n/p− α− 1 − ε : x = 0

−ε : x 6= 0

for ε > 0 and (n− α− 1)p < −n. Then

f ∈ BS,smin
p (Rn).

Proof By the estimates we did in example (c), section 4.1.2, we have

‖k(f)|lp‖smin
≤ ‖k(f)|lp‖s(0) <∞

if (n − α − 1)p < −n. The interesting term is again the supremum. As a first
case we treat all K,x with 0 ∈ Bx,2−K+2 . Then sK,x ≤ s(0) for all such K,x.
Therefore,

sup
K,x

0∈B
x,2−K+2

2−K(sK,x−smin)

(
∑

β,j,m

K,x
2j(sK,x−n/p)p|kβ

j,m(f)|p

)1/p

≤ sup
K,x

0∈B
x,2−K+2

(
∑

β,j,m

K,x
2j(s(0)−n/p)p|kβ

j,m(f)|p

)1/p

≤

(
∑

β,j,m

2j(s(0)−n/p)p|kβ
j,m(f)|p

)1/p

= ‖k(f)|lp‖s(0) <∞.

Now we treat the second case 0 6= Bx,2−K+2 . If we assume |m| < 2J , then by
j > J +K and K ≥ J follows

|x− 2−jm| ≥ 2−K+2 − 2−K ≥ 2−K+1 + 2−j

and we have
Bx,2−K+1 ∩B2−jm,2−j = ∅.

Therefore, we can restrict ourselves to all |m| ≥ 2J , or more precise, by j > J+K
to all |m| ≥ 2j−K . On the other hand in example (c), subsection 4.1.2, we found,
because of the integration conditions for

kβ
j,m(f) =

∫

y∈supp k

|2−jm+2−jy|≤1

(2−Jy)βk(y)f(2−jm+ 2−jy)dy,

that |m| ≤ 2j+1. Hence, in the second case we only need the coefficients kβ
j,m(f)

with 2j−K ≤ |m| ≤ 2j+1. With |y| < 2J we find as a new integration condition,
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that 2−K−1 ≤ |2−jm + 2−jy| ≤ 1. For q = supy∈supp k |2
−Jy| with q < 1 we

estimate

|kβ
j,m(f)| ≤ cq|β|

∫

y∈supp k

2−K−1≤|2−jm+2−jy|≤1

|Dγ(ψ(2−jm+ 2−jy)|2−jm+ 2−jy|−α)|dy

≤ cq|β|2α(K+1)2Jn.

Now we can estimate the supremum in the second case

sup
K,x

0/∈B
x,2−K+2

2−K(sK,x−smin)
(∑

β,j

2j−K≤|m|≤2j+1

K,x
2j(sK,x−n/p)p|kβ

j,m(f)|p
)1/p

≤ c sup
K,x

0/∈B
x,2−K+2

2−K(sK,x−smin−α)

(
∞∑

j=J+K+1

2j(sK,x−n/p)p2jn

)1/p

≤ c sup
K,x

0/∈B
x,2−K+2

2−K(1−n/p)

(
∞∑

j=J+1

2−jεp

)1/p

<∞,

because from (n− α− 1)p < −n follows p > n. That proves the assertion.
2

Analogously one can prove a corresponding result for two or more separated
singularities. Let h(x) = gα1(x)+ gα2(x−x0) with g(x) from Example 6.3, where
now n− 1 < α1, α2 < n and |x0| > 8. Then we put f(x) = (Dγh)(x) for γ ∈ N

n
0

with |γ| = 1 and can state, that f ∈ BS,smin
p (Rn), if

s(x) =





n/p− α1 − 1 − ε : x = 0
n/p− α2 − 1 − ε : x = x0

−ε : otherwise

for ε > 0 and p sufficiently large.

6.3 Two-microlocal spaces

In this subsection we discuss the connection between the spaces of varying smooth-
ness and the so-called two-microlocal spaces. These spaces were first defined by
J.M. Bony in 1984, and have been studied in connection with wavelet methods
by S. Jaffard and Y. Meyer, see [11] for details and references. We follow the
approach given there. Let λl

j,m(f) be the wavelet coefficients of f ∈ S ′(Rn) in the
decomposition (5.3), that we treated in Theorem 5.1.
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Definition 6.1 Let s and s′ be two real numbers and x0 ∈ R
n. The two-

microlocal space Cs,s′(x0) is the collection of all distributions f such that

|λl
j,m(f)| ≤ c2−js(1 + |m− 2jx0|)−s′ , (6.6)

for all j ∈ N0, m ∈ Z
n, 1 ≤ l ≤ L.

This definition of Cs,s′(x0) is given in [11], Proposition 1.4., as an equivalent char-
acterization. The original one was formulated before in terms of the Littlewood-
Paley decomposition, where also a discussion about basic properties can be found.
We will treat the case s′ ≥ 0, which corresponds to our notion of lower semi-
continuous functions to describe a situation where a distribution has a singularity
at the point x0 and is smoother in a neighbourhood. Now we state the Theo-
rem which shows the connection of the two-microlocal spaces and the spaces of
varying smoothness.

Theorem 6.4 Let s′ ≥ 0 and f ∈ Cs,s′(x0). Then

f ∈ BS,s0
∞ (Rn) with s0 < 0 and s(x) ≤

{
s : x = x0

s+ s′ : otherwise.

Here the meaning of the two parameters s and s′ becomes clear. The smoothness
in the point x0 is described by s and its difference to the smoothness in a neigh-
bourhood around x0 is described by s′.
Proof We use Theorem 6.3. The first term of the right-hand side of (6.4) is
easy to estimate,

‖λ(f)|bsmin
∞ ‖ = sup

l,j,m
2jsmin|λl

j,m(f)| ≤ sup
l,j,m

2jsc2−js <∞.

The norm in the supremum term on the right-hand side of (6.4) reads as

‖λ(f)|bsK,x
∞ ‖K,x = sup

l,j,m

K,x2jsK,x |λl
j,m(f)|,

where the supremum is taken over all l,m and j > J̃ +K with

Bx,2−K+1 ∩B2−jm,2−j 6= ∅. (6.7)

To estimate this norm we distinguish two cases. As the first case we treat all
x,K with |x− x0| ≤ 2−K+2. Then we know that sK,x ≤ s(x0) ≤ s. Therefore we
have

‖λ(f)|bsK,x
∞ ‖K,x ≤ sup

l,j,m

K,x2jsc2−js ≤ c.

In the other case we have |x− x0| > 2−K+2 and because of (6.7) we can estimate

|m− 2jx0| ≥ |2j(x− x0)| − |2jx−m| ≥ 2j−K+2 − 2j−K+1 − 1 ≥ 2j−K+1 − 1.
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Therefore we get

‖λ(f)|bsK,x
∞ ‖K,x ≤ sup

l,j,m

K,x2jsK,xc2−js(1 + |m− 2jx0|)
−s′

≤ c sup
j>J̃+K

2(j−K)sK,x2−(j−K)s2−(j−K)s′2K(sK,x−s)

≤ c2K(sK,x−s),

where we used sK,x ≤ s+ s′ in the last line. Finally we obtain for the supremum
on the right-hand side of (6.4)

sup
x,K≥J̃

2−K(sK,x−smin)‖λ(f)|bsK,x
∞ ‖K,x ≤ c sup

x,K≥J̃

2−K(s−smin) <∞,

which proves the assertion.
2

It would be desirable to have also the other direction, this would mean that
the two involved spaces are equal. But that can not be expected, because for
coefficients λl

j,m(f), where 2−jm is far away from x0, condition (6.6) is to strong
to hold for a function f ∈ BS,smin

∞ (Rn). Nevertheless we can prove the other
direction in terms of a local version of Cs,s′(x0). We say that a function f belongs

to Cs,s′

loc (x0) if there exists a neighborhood Ux0 of x0 and a function h ∈ Cs,s′(x0)
such that f = h on Ux0 , see also [11](p.15).

Theorem 6.5 Let s < 0, s′ ≥ 0 and f ∈ BS,s
∞ (Rn) with

s(x) =

{
s : x = x0

s+ s′ : otherwise.

Then f ∈ Cs,s′

loc (x0).

Proof We start with some short preparations. It is sufficient to prove that
ϕx0f ∈ Cs,s′(x0) for a C∞-function ϕx0(x) with

ϕx0(x) = 1 for |x− x0| ≤ 1 and ϕx0(x) = 0 for |x− x0| > 2.

By Theorem 3.3 we know if f ∈ BS,s
∞ (Rn) for s < 0 then we also have ϕx0f ∈

BS,s
∞ (Rn), hence, it is even enough to show that g ∈ Cs,s′(x0) for any compactly

supported function g ∈ BS,s
∞ (Rn). We assume supp g ⊂ Bx0,1, then we have

|λl
j,m(g)| = 0 if |2−jm− x0| ≥ 1 + 2J̃−j.

So we only care about the coefficients for which |2−jm − x0| ≤ 1 + 2J̃−j. If, in
addition, j < j0 for a j0 ∈ N we get by Theorem 6.3

|λl
j,m(g)| ≤ c2−js ≤ c2−js(1 + |2jx0 −m|)−s′ ,
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because s′ ≥ 0. We choose j0 = J̃ + 4 and divide the estimate for the coefficients
in the case j ≥ j0 into two steps.
Step 1

As a first case we treat all coefficients λl
j,m(g) such that we can find a number

i ∈ {J̃ + 4, J̃ + 5, . . . , j} with

2−j+i < |2−jm− x0| ≤ 2−j+i+1.

Then we have for x1 = 2−jm and K1 = j − i+ 3

Bx1,2−K1−1 ∩B2−jm,2−j 6= ∅ and |x1 − x0| > 2−K1+2.

Now Theorem 6.3 gives

|λl
j,m(g)| ≤ c2K1(sK1,x1

−s)2−jsK1,x1 = c2(j−i+3)(s+s′−s)2−j(s+s′) ≤ c2−js2−is′ , (6.8)

because sK1,x1 = s+ s′ holds in that case. Furthermore, we know

1 + |2jx0 −m| ≤ 1 + 2i+1 ≤ c2i.

Inserting that into (6.8) we obtain

|λl
j,m(g)| ≤ c2−js(1 + |2jx0 −m|)−s′ .

Step 2
For all the remaining coefficients we have

|2−jm− x0| ≤ 2−j+J̃+4.

Then for x2 = 2−jm and K2 = j − J̃ − 2

Bx2,2−K2−1 ∩B2−jm,2−j 6= ∅ and |x2 − x0| < 2−K2+2

hold. Theorem 6.3 gives

|λl
j,m(g)| ≤ c2K2(sK2,x2

−s)2−jsK2,x2 = c2−js, (6.9)

because now sK2,x2 = s holds. We can also estimate

1 + |2jx0 −m| ≤ 1 + 2J̃+4 ≤ c.

Therefore we obtain

|λl
j,m(g)| ≤ c2−js(1 + |2jx0 −m|)−s′

also in this case. That completes the proof.
2

So far we only treated the case p = ∞. A more general definition for two-
microlocal spaces was given by Moritoh and Yamada in [18], where they treated
homogeneous spaces Bs,s′

p,q (U) for 1 ≤ p, q ≤ ∞, s > 0, s′ ∈ R and an open subset
U ⊂ R

n. We give now a modified version of this definition.
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Definition 6.2 Let s and s′ be two real numbers, 1 < p < ∞ and x0 ∈ R
n.

The two-microlocal space Bs,s′

p (x0) is the collection of all distributions f ∈ S ′(Rn)
such that

‖f |Bs,s′

p (x0)‖ =

(
∑

j∈N0

2j(s−n/p)p
∑

m∈Zn

(1 + |2jx0 −m|)s′p|λl
j,m(f)|p

)1/p

<∞.

Again we restrict ourselves to s′ ≥ 0 in order to prove the following connection to
the spaces of varying smoothness, where the smoothness behavior is characterized
by a lower semi-continuous function.

Theorem 6.6 Let s′ ≥ 0 and f ∈ Bs,s′

p (x0). Then

f ∈ BS,s0
p (Rn) with s0 < 0 and s(x) ≤

{
s : x = x0

s+ s′ : otherwise.

Proof We use Theorem 6.3 again. Because smin ≤ s and s′ ≥ 0 we get imme-
diately

‖λ(f)|bsmin
p ‖ =

(
∑

j,m,l

2j(smin−n/p)p|λl
j,m(f)|p

)1/p

≤ ‖f |Bs,s′

p (x0)‖ <∞.

In order to estimate the supremum term on the right-hand side of (6.4) we discuss
two cases. As a first case we treat all x and K ≥ J̃ such that |x− x0| ≤ 2−K+2.
Then we know sK,x ≤ s and can estimate

‖λ(f)|bsK,x
p ‖K,x ≤

(
∑

j,m,l

K,x
2j(s−n/p)p|λl

j,m(f)|p

)1/p

≤ ‖f |Bs,s′

p (x0)‖ ≤ c.

In the second case we treat all x and K ≥ J̃ with |x−x0| > 2−K+2. Then we know
sK,x ≤ s+ s′. Furthermore, under the assumption |x− 2−jm| ≤ 2−K+1 + 2−j for
j > J̃ +K we have 1 + |2jx0 −m| ≥ 2j−K . Now we can estimate in the following
way

‖λ(f)|bsK,x
p ‖K,x

=

(
∑

j,m,l

K,x
2j(sK,x−n/p)p(1 + |2jx0 −m|)s′p(1 + |2jx0 −m|)−s′p|λl

j,m(f)|p

)1/p

≤

(
∑

j,m,l

K,x
2(j−K)(sK,x−n/p)p2K(sK,x−n/p)p(1 + |2jx0 −m|)s′p2−(j−K)s′p|λl

j,m(f)|p

)1/p
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≤ 2K(sK,x−n/p)

(
∑

j,m,l

K,x
2(j−K)(sK,x−s′−n/p)p(1 + |2jx0 −m|)s′p|λl

j,m(f)|p

)1/p

≤ 2K(sK,x−n/p)2−K(s−n/p)

(
∑

j,m,l

K,x
2j(s−n/p)p(1 + |2jx0 −m|)s′p|λl

j,m(f)|p

)1/p

≤ 2K(sK,x−s)‖f |Bs,s′

p (x0)‖ ≤ c2K(sK,x−s),

because sK,x − s′ ≤ s. Therefore we obtain for the supremum term on the right-
hand side of (6.4)

sup
x,K≥J̃

2−K(sK,x−smin)‖λ(f)|bsK,x
p ‖K,x ≤ c sup

K≥J̃

2−K(s−smin) <∞,

which proves the desired assertion.
2

As in the case p = ∞, by the same arguments as there, it is not possible to get the
converse result. Therefore we define again the local version Bs,s′

p,loc(x
0) by the same

restriction procedure as before. But not even the corresponding weaker result, in
analogy to Theorem 6.5, can be expected. We briefly explain the reason. In Step
1 of the proof of Theorem 6.5 we had to distinguish between the coefficients with

2−j+i < |2−jm− x0| ≤ 2−j+i+1

for different numbers i to use information from Theorem 6.3. We would have to
go the same way now, but then we would get an additional sum over all these
numbers i, such that the left-hand side of (6.4) would not dominate the norm

in Bs,s′

p,loc(x
0) up to a constant. It turns out, that this additional sum does not

matter if we slightly decrease the smoothness in the target space. We can state
the following. Let s < 0, s′ ≥ 0 and f ∈ BS,s

p (Rn) with

s(x) =

{
s : x = x0

s+ s′ : otherwise.

Then f ∈ B s̃,s′

p,loc(x
0) with s̃ < s.
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7 Further problems

The investigations of this section are essentially based on the results proven in
the last section. The norm estimates given there will be extremely helpful for the
problems we are going to treat now.

7.1 Sharp embeddings

A standard challenge when dealing with function spaces is to give sharp em-
bedding conditions. Now we will prove that the conditions appearing in Theo-
rem 3.4 and Corollary 3.1 are not only sufficient but also necessary, at least if
s0 = smin < 0. We start with the simpler case p1 = p2 = p.

Theorem 7.1 Let 1 < p ≤ ∞ and let S
1 and S

2 be bounded lower semi-continuous
functions in R

n with s1
min, s

2
min < 0.

If B
S1,s1

min
p (Rn) ⊂ B

S2,s2
min

p (Rn), then s1(x) ≥ s2(x) for all x ∈ R
n.

Proof We assume that there exists a point x0 ∈ R
n, such that s1(x0) < s2(x0)

holds. Then there is a neighborhood Ux0 of x0 with the properties

inf
x∈Ux0

s1(x) ≤ s1(x0)

inf
x∈Ux0

s2(x) ≥ s1(x0) + δ for δ > 0,

(see formula (3.1)). Let us assume x0 = 0, U0 = Br with r > 0, then we define
for 0 < ε < δ the coefficients

λ0
j,0(f) =

{
2j(n/p−s1(0)−ε) : B2−j ⊂ U0

0 : otherwise

and λl
j,m(f) = 0 for l,m 6= 0. In the case 0 /∈ Bx,2−K+2 , then by j > J̃ + K we

have
Bx,2−K+1 ∩B2−j = ∅.

Therefore we can write

sup
K,x

2−K(s1
K,x−s1

min)‖λ(f)|b
s1
K,x

p ‖K,x = sup
K,x

0∈B
x,2−K+2

2−K(s1
K,x−s1

min)‖λ(f)|b
s1
K,x

p ‖K,x.
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We know that for all K and x with 0 ∈ Bx,2−K+2 , the relation s1
K,x ≤ s1(0) holds,

hence, for K ≥ J̃ , we get

sup
K,x

0∈B
x,2−K+2

2−K(s1
K,x−s1

min)



∑

j>J̃+K

K,x
2j(s1

K,x−n/p)p|λ0
j,0(f)|p




1/p

≤




∞∑

j=2J̃+1

2j(s1(0)−n/p)p2j(n/p−s1(0)−ε)p




1/p

=




∞∑

j=2J̃+1

2−jεp




1/p

<∞,

where, again we used 2−K(s1
K,x−s1

min) ≤ 1. Furthermore

‖λ(f)|b
s1
min

p ‖ ≤ ‖λ(f)|bs
1(0)

p ‖ <∞.

On the other hand, we calculate

sup
K,x

2−K(s2
K,x−s2

min)




∑

j>J̃+K+2

K+2,x
2j(s2

K,x−n/p)p|λ0
j,0(f)|p




1/p

≥ 2
−K̃(s2

K̃,0
−s2

min)




∞∑

j=J̃+K̃+1

2j(s1(0)+δ−n/p)p2j(n/p−s1(0)−ε)p




1/p

= 2
−K̃(s2

K̃,0
−s2

min)




∞∑

j=J̃+K̃+1

2j(δ−ε)p




1/p

= ∞,

where we chose K̃ sufficiently large. But now it follows with both sides of (6.4)
that

f ∈ B
S1,s1

min
p (Rn) but f /∈ B

S2,s2
min

p (Rn),

which proves the assertion.
2

Theorem 7.2 Let 1 < p1 < p2 ≤ ∞ and let S
1 and S

2 be bounded lower semi-
continuous functions in R

n with s1
min, s

2
min < 0.

If B
S1,s1

min
p1 (Rn) ⊂ B

S2,s2
min

p2 (Rn) then s1(x)−
n

p1

≥ s2(x)−
n

p2

for all x ∈ R
n.
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Proof The idea of this proof is the same as for the proof of Theorem 7.1. We
put

s̃1(x) = s1(x) − n/p1 and s̃2(x) = s2(x) − n/p2

and assume that there exists a point x0 ∈ R
n, such that s̃1(x0) < s̃2(x0) holds.

Then there is a neighborhood Ux0 of x0 with the properties

inf
x∈Ux0

s̃1(x) ≤ s̃1(x0)

inf
x∈Ux0

s̃2(x) ≥ s̃1(x0) + δ for δ > 0,

(see formula (3.1)). Let us assume x0 = 0, U0 = Br with r > 0, then we define
for 0 < ε < δ the coefficients

λ0
j,0(f) =

{
2−j(s̃1(0)+ε) : B2−j ⊂ U0

0 : otherwise

and λl
j,m(f) = 0 for l,m 6= 0. In the case 0 /∈ Bx,2−K+2 , then by j > J̃ + K we

have
Bx,2−K+1 ∩B2−j = ∅.

Therefore we can write

sup
K,x

2−K(s1
K,x−s1

min)‖λ(f)|b
s1
K,x

p1 ‖K,x = sup
K,x

0∈B
x,2−K+2

2−K(s1
K,x−s1

min)‖λ(f)|b
s1
K,x

p1 ‖K,x.

We know that for all K and x with 0 ∈ Bx,2−K+2 , the relation s̃1
K,x ≤ s̃1(0) holds,

hence, for K ≥ J̃ , we get

sup
K,x

0∈B
x,2−K+2

2−K(s1
K,x−s1

min)



∑

j>J̃+K

K,x
2js̃1

K,xp1|λ0
j,0(f)|p1




1/p1

≤




∞∑

j=2J̃+1

2js̃1(0)p12−j(s̃1(0)+ε)p1




1/p1

=




∞∑

j=2J̃+1

2−jεp1




1/p1

<∞,

where, again we used 2−K(s1
K,x−s1

min) ≤ 1. Furthermore

‖λ(f)|b
s1
min

p1 ‖ ≤ ‖λ(f)|bs
1(0)

p1
‖ <∞.

60



On the other hand, we estimate

sup
K,x

2−K(s2
K,x−s2

min)




∑

j>J̃+K+2

K+2,x
2js̃2

K,xp2|λ0
j,0(f)|p2




1/p2

≥ 2
−K̃(s2

K̃,0
−s2

min)




∞∑

j=J̃+K̃+1

2j(s̃1(0)+δ)p22−j(s̃1(0)+ε)p2




1/p2

= 2
−K̃(s2

K̃,0
−s2

min)




∞∑

j=J̃+K̃+1

2j(δ−ε)p2




1/p2

= ∞,

where we chose K̃ sufficiently large. But now it follows with both sides of (6.4)
that

f ∈ B
S1,s1

min
p1 (Rn) but f /∈ B

S2,s2
min

p2 (Rn),

which proves the assertion.
2

7.2 A special construction

In this section we try to answer the following question. Given a lower semi-
continuous function S : x 7→ s(x) in R

n, is it possible to construct a function f
with the properties

f ∈ BS,smin
p (Rn) and f /∈ BS+̺,smin

p (Rn)

for every non-negative lower semi-continuous function ̺ = ̺(x) 6= 0?
We try to give a partial answer to this question. We generalize the construction
of Theorem 16.2 in [24] for the one-dimensional case. Let

ω(x) = e
− 1

1−4x2 if |x| < 1/2 and ω(x) = 0 otherwise, x ∈ R,

be the C∞
0 (R) standard function. Let 0 < s < 1 and νi = 2κi for i ∈ N and

κ ∈ R+ with 2κs > 1. Then we set

f =
∞∑

k=0

∞∑

i=1

fk,i, with fk,i(x) = 2−νis
∑

l

i
ω(2νix− l), (7.1)

where we sum over those l ∈ Z, such that Qνi,l ⊂ Qk. Here we used the nota-
tion Qν,l for the interval [2−νl − 2−ν , 2−νl + 2−ν ] and Qk = [2−2k−1, 2−2k). The
construction gives

supp f ⊂ [0, 1] with supp fk,i ⊂ Qk for all i ∈ N.
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We know by the Theorem 13.8 in [24], that the function f belongs to Bs
∞(R). At

first we shall check that its first derivative f ′ belongs to Bs−1
∞ (R) in terms of our

characterisation (4.11). Therefore, we have to estimate the coefficients kβ
j,m(f ′),

where we use the abbreviation Ij,m for the interval [2−jm− 2J−j, 2−jm+ 2J−j].
Case 1: dist(0, Ij,m) < 2−j

Here we integrate in the distributional sense

kβ
j,m(f ′) = 2j

∫

Ij,m

(2j−Jy − 2−Jm)βk(2jy −m)f ′(y)dy.

After a simple calculation we get by |2jy −m| < 2J

|kβ
j,m(f ′)| ≤ c22j

∫

Ij,m

f(y)dy.

Now we treat the remaining integral

∫

Ij,m

∞∑

k=0

∞∑

i=1

2−νis
∑

l

i
ω(2νiy − l)dy. (7.2)

Since dist(0, Ij,m) < 2−j, we need for the integration at most those Qk with
k & (j − J)/2. Furthermore, because of Qνi,l ⊂ Qk, we have the condition
νi & 2k. That gives

(7.2) ≤
∑

k&j−J
2

∑

i∈N

νi&2k

2−νis

∫

Qk

∑

l

i
ω(2νiy − l)dy.

Now, for fixed i, k, we ask, how many l ∈ Z there are with Qνi,l ⊂ Qk, and we
count ∼ 2−2k+νi . Moreover, we estimate

∫

Qνi,l

ω(2νiy − l)dy ≤ c2−νi .

Altogether we have

(7.2) ≤ c
∑

k&j−J
2

∑

i∈N

νi&2k

2−νis2−2k+νi2−νi ≤ c2−j−js

and get the following estimate

|kβ
j,m(f ′)| ≤ c22j2−j−js ≤ c2−j(s−1). (7.3)
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Case 2: dist(0, Ij,m) ≥ 2−j

We write

f = f1 + f2, with f1 =
∞∑

k=0

[I]∑

i=1

fk,i and f2 =
∞∑

k=0

∞∑

i=[I]+1

fk,i, (7.4)

where [I] is the whole part of a non-negative real number I which we choose later
on. Because of the linearity of the coefficients kβ

j,m, we have

kβ
j,m(f ′) = kβ

j,m(f ′
1) + kβ

j,m(f ′
2).

We start to estimate the coefficients for f ′
1,

kβ
j,m(f ′

1) =

∫

supp k

(2−Jy)βk(y)f ′
1(2

−jm+ 2−jy)dy.

Since dist(0, Ij,m) ≥ 2−j, we only need a finite number of Qk’s for the integration,
therefore, we integrate in the usual sense and get

|kβ
j,m(f ′

1)| ≤ c

j/2∑

k=0

[I]∑

i=1

2−νi(s−1)

∫

2jQk−m

∑

l

i
|ω′(2νi(2−jm+ 2−jy) − l)|dy. (7.5)

Now we use the same arguments as above and can estimate

|kβ
j,m(f ′

1)| ≤ c

j/2∑

k=0

[I]∑

i=1

2−νi(s−1)2−2k+νi2−νi

≤ c2−ν[I](s−1) ≤ c2−2κI(s−1) ≤ c2−j(s−1), (7.6)

where we chose 2κI = j to arrive at the desired estimate.
For the coefficients of f ′

2 we integrate in the distributional sense and get

|kβ
j,m(f ′

2)| ≤ c22j

∫

Ij,m

∣∣∣∣∣∣

∞∑

k=0

∞∑

i=[I]+1

fki
(y)

∣∣∣∣∣∣
dy. (7.7)

The construction of the fki
gives

sup
y

∣∣∣∣
∞∑

i=[I]+1

fki
(y)

∣∣∣∣ ≤ c2−ν[I]+1s
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and because the functions fki
have disjoint supports for different k we find

|kβ
j,m(f ′

2)| ≤ c22j|Ij,m| sup
y∈Ij,m




∞∑

k=0

∣∣∣∣
∞∑

i=[I]+1

fki
(y)

∣∣∣∣




≤ c22j2−j2−ν[I]+1s

≤ c2j2−js

≤ c2−j(s−1), (7.8)

where we used 2κI = j again.
Finally, (7.3) together with (7.6) and (7.8) prove f ′ ∈ Bs−1

∞ (R).
Now we generalize the construction (7.1) and define for a monotone increasing
sequence (sk)

∞
k=0, with 0 < sk < 1 for all k , the function

F =
∞∑

k=0

∞∑

i=1

Fk,i, with Fk,i = 2−νisk

∑

l

i
ω(2νix− l),

with the same restrictions for the sum over l as in (7.1). By the previous calcu-
lations we are able to prove the following.

Example 7.1 Let S : x 7→ s(x) be a lower semi-continuous function in R with

s(x) =

{
sk − 1 : x ∈ Qk

−ε : otherwise

for ε > 0. Then F ′ ∈ BS,smin
∞ (R).

Here F ′ denotes the first derivative of F .
Proof
We have to check, that

‖k(F ′)|l∞‖smin
+ sup

x,K≥J
2−K(sK,x−smin)‖k(F ′)|l∞‖K,x

sK,x
<∞.

We start with the first part

‖k(F ′)|l∞‖smin
= sup

β,j,m
2jsmin |kβ

j,m(F ′)|.

If we substitute s by sk in (7.2) and (7.5), increase the factor 2−νisk (or 2−νi(sk−1))
by 2−νis0 (or 2−νi(s0−1)) and follow the previous calculation, then we have by (7.3),
(7.6) and (7.8)

|kβ
j,m(F ′)| ≤ c2−j(s0−1). (7.9)
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Because of smin ≤ s0 − 1 it follows, that ‖k(F ′)|l∞‖smin
<∞.

Now we take care about the second part and check, if

sup
x,K≥J

2−K(sK,x−smin) sup
β,j,m

K,x2jsK,x|kβ
j,m(F ′)| <∞, (7.10)

where the supremum is taken over all

m, j > J +K with Bx,2−K+1 ∩B2−jm,2−j 6= ∅.

We split the supremum over x,K in (7.10) into the five cases A-E.
A: Bx,2−K+2 ∩ [0, 1] = ∅.

That is the trivial case, because all the coefficients kβ
j,m(F ′) are zero.

B: Bx,2−K+2 ⊃ [0, 1].
In this case we have sK,x ≤ s0 − 1 and (7.9) answers the question in (7.10).
C: Bx,2−K+2 has a non-empty intersection with at most one Qk.
Then we know sK,x = sk − 1. We use the idea of Case 2 and split F into F1 and
F2 as in (7.4). Then we get similar to (7.5) and (7.6)

|kβ
j,m(F ′

1)| ≤ c

[I]∑

i=1

2−νi(sk−1)

∫

Qk

∑

l

i
|ω′(2νi(2−jm+ 2−jy) − l)|dy

≤ c

[I]∑

i=1

2−νi(sk−1)2−2k+νi2−νi

≤ c2−ν[I](sk−1) ≤ c2−2κI(sk−1) ≤ c2−j(sk−1),

which is the desired estimate, if we choose 2κI = j again. Furthermore, as in
(7.7) and (7.8), we have

|kβ
j,m(F ′

2)| ≤ c22j

∫

Ij,m

∣∣∣∣∣∣

∞∑

i=[I]+1

Fk,i(y)

∣∣∣∣∣∣
dy

≤ c22j|Ij,m|2
−ν[I]+1sk

≤ c2−j(sk−1).

That means, that condition (7.10) is fulfilled in this case.
D: Bx,2−K+2 has a non-empty intersection with all Qk for k ≥ k0.

Now sK,x = sk0 − 1 holds. For the estimate of kβ
j,m(F ′) we have to distinguish

between dist(0, Ij,m) < 2−j and dist(0, Ij,m) ≥ 2−j again. For dist(0, Ij,m) < 2−j

we follow the way of Case 1 and get

|kβ
j,m(F ′)| ≤ c22j

∫

Ij,m

∞∑

k=0

∞∑

i=1

2−νisk

∑

l

i
ω(2νiy − l)dy.
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By dist(0, Ij,m) < 2−j and the restrictions for the case D, it follows

|kβ
j,m(F ′)| ≤ c22j

∑

k&j−J
2

≥k0

∑

i∈N

νi&2k

2−νisk0

∫

Qk

∑

l

i
ω(2νiy − l)dy

≤ c22j
∑

k&j−J
2

≥k0

∑

i∈N

νi&2k

2−νisk02−2k+νi2−νi

≤ c22j2−j−jsk0

≤ c2−j(sk0
−1).

For dist(0, Ij,m) ≥ 2−j we use again the idea of Case 2 and find analogously to
(7.5) and (7.6)

|kβ
j,m(F ′

1)| ≤ c

j/2∑

k=k0

[I]∑

i=1

2−νi(sk−1)

∫

Qk

∑

l

i
|ω′(2νi(2−jm+ 2−jy) − l)|dy

≤ c

j/2∑

k=k0

[I]∑

i=1

2−νi(sk0
−1)2−2k+νi2−νi

≤ c2−j(sk0
−1),

in the same way as above. Moreover, similar to (7.7) and (7.8), we can estimate

|kβ
j,m(F ′

2)| ≤ c22j

∫

Ij,m

∞∑

k=k0

∣∣∣∣∣∣

∞∑

i=[I]+1

Fk,i(y)

∣∣∣∣∣∣
dy

≤ c22j|Ij,m|2
−ν[I]+1sk0

≤ c2−j(sk0
−1),

so that condition (7.10) is fulfilled in this case.
E: Bx,2−K+2 has a non-empty intersection with at most Qka , Qka+1, . . . , Qkb

.
In this case we have sK,x = ska − 1. Furthermore, in (7.10), the supremum over
x,K, in this case, can be estimated from above by the corresponding supremum
in the case D with ka = k0. As in case D we find

|kβ
j,m(F ′)| ≤ c2−j(ska−1),

which ensures, that condition (7.10) is fulfilled in this case.
Since we proved that (7.10) is fulfilled in all cases A-E, the proof is complete.

2
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Remark 7.1 Motivated by Theorem 16.2 in [24] we also wanted to prove that F ′

does not belong to any better space in terms of smoothness. Then we would have
shown that F ′ is an extremal function in the space BS,smin

∞ (R). But we recently
learned from [6] that the function constructed in the proof of Theorem 16.2 in
[24] does not have the desired property, although the Theorem is correct, which is
also shown in [6].

The statement proved above is only a partial answer to the question under con-
sideration, because the given function S : x 7→ s(x) has a special dyadic structure.
It is possible to generalize that a bit in the following way. At first we fill the gaps
between the Qk’s. For the function

F̂ =
∞∑

k=0

∞∑

i=1

F̂k,i with F̂k,i = 2−νisk

∑

l

i
ω(2νix− l),

where supp F̂k,i ⊂ Q̂k = [2−2k−2, 2−2k−1) it follows by the previous calculations,

that F̂ ′ ∈ B
bS,bsmin
∞ (R), where Ŝ : x 7→ ŝ(x) is a lower semi-continuous function in

R with

ŝ(x) =

{
ŝk − 1 : x ∈ Q̂k

−ε : otherwise

for ε > 0 and a monotone increasing sequence (ŝk)
∞
k=0 with 0 < sk < 1 for all k.

Now, by Corollary 3.2, we can state, that F ′+F̂ ′ ∈ BS̃,s̃min
∞ (R), where S̃ : x 7→ s̃(x)

is a lower semi-continuous function in R with

s̃(x) =

{
sk − 1 : x ∈ Qk

ŝk − 1 : x ∈ Q̂k.

Now we only sketch the further way very roughly. We could repeat the whole
procedure and divide every Qk and Q̂k in subcubes by the same method. Instead
of sk and ŝk we would have suitable sequences (sk,t)

∞
t=0 and (ŝk,t)

∞
t=0 and could

construct for every Qk and Q̂k a function with the corresponding smoothness
behavior again. If we repeat that over and over again, it seems possible, that
in the limit, the dyadic structure of the step functions goes over to a continuous
structure.

Remark 7.2 One could also ask the inverse question: Given a function f ∈ S ′,
is it possible to construct a lower semi-continuous function S : x 7→ s(x) in R

n

with the properties

f ∈ BS,s0
p (Rn) and f /∈ BS+̺,s0

p (Rn)

for every non-negative and non-vanishing lower semi-continuous function ̺(x)?
We had a few conjectures about how to construct such a function but did not
succeed in proving one.
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